nabu.processing.azim
source module nabu.processing.azim
Functions
-
azimuthal_integration — Computes azimuthal integration of an image or a stack of images.
-
do_radial_distribution — Translates the Java method
doRadialDistribution(from imagej) into Python using NumPy. Done by chatgpt-4o on 2024-11-08
source azimuthal_integration(img, axes=(-2, -1), domain='direct')
Computes azimuthal integration of an image or a stack of images.
Parameters
-
img :
numpy.array\_like— The image or stack of images. -
axes : tuple(int, int), optional — Axes of that need to be azimuthally integrated. The default is (-2, -1).
-
domain : string, optional — Domain of the integration. Options are: "direct" | "fourier". Default is "direct".
Raises
-
ValueError — Error returned when not passing images or wrong axes.
-
NotImplementedError — In case of tack of images for the moment.
Returns
-
numpy.array\_like— The azimuthally integrated profile.
source do_radial_distribution(ip, X0, Y0, mR, nBins=None, use_calibration=False, cal=None, return_radii=False)
Translates the Java method doRadialDistribution (from imagej) into Python using NumPy.
Done by chatgpt-4o on 2024-11-08
Parameters
-
- ip — A 2D numpy array representing the image.
-
- X0, Y0 — Coordinates of the center.
-
- mR — Maximum radius.
-
- nBins — Number of bins (optional, defaults to 3*mR/4).
-
- use_calibration — Boolean indicating if calibration should be applied.
-
- cal — Calibration object with attributes
pixel_widthandunits(optional).
source azimuthal_integration_skimage(img, center=None, offset=1)
source azimuthal_integration_imagej_stack(images_stack, n_threads=4)
Raises
-
ValueError
source azimuthal_integration_skimage_stack(images_stack, n_threads=4)
Raises
-
ValueError