
Parallax:
A journey in sensor physics

J. Kieffer, with the input from:
G. Lotze, V. Poline, M. Ruat, P-A Douissard, M. Di Michiel,
V. Diadkin, D. Chernyshov

ESRF user meeting tutorial 2026 T10A
Advanced session on pyFAI

02/02/2026PyFAI tutorial: Jérôme KiefferPage 2

Fast Azimuthal Integration using Python

Kieffer, Jerome; Valls, Valentin; Gutierrez-Fernandez; Edgar, Ashiotis; Giannis, Karkoulis, Dimitris; Nawaz, Zubair;
Deschildre, Aurore; Vincent, Thomas; Picca, Frederic Emmanuel; Massahud, Emily; Payno, Henri; Huder, Loïc; Wright,
Johnathan Paul; Pandolfi, Ronald; Jankowski, Maciej; Paleo, Pierre; Faure, Bertrand; Storm, Malte; De Nolf, Wout; Wright,
Christopher J.; Hopkins, Jesse B,; Pascal, Elena; Weninger, Clemens; Detlefs, Carsten; Plaswig, Florian; Lavanchy,
Aurelien; gbenecke; zxs-un; iltommi11; dodogerstlin; harshal301002; Lotze, Gudrun

https://zenodo.org/records/17984195

https://zenodo.org/records/17984195

02/02/2026PyFAI tutorial: Jérôme KiefferPage 3

Parallax effect observed at ESRF-ID13

● Eiger 4M detector 75µm pixel size

● Silicon sensor 450µm thickness

● Sample: α-Al2O3 @13,45 keV

At large incident angle (>30°), photons get
detected at even larger scattering angles

02/02/2026PyFAI tutorial: Jérôme KiefferPage 4

Parallax in photon detection

On the Influence of Parallax Effects in Thick Silicon
Sensors in Coherent Diffraction Imaging

doi:10.1088/1742-6596/3010/1/012135

I=I 0⋅e
−µ⋅r

−d I=μ⋅I⋅d x

Beer–Lambert law:

02/02/2026PyFAI tutorial: Jérôme KiefferPage 5

Sensor absorption convoluted with beam profile (1d)

https://github.com/silx-kit/pyFAI/blob/main/doc/source/usage/tutorial/ThickDetector/Parallax_model.ipynb

On the resolution function for powder diffraction with area detectors
https://doi.org/10.1107/S2053273321007506

Beam Profile Beer-Lambert

https://github.com/silx-kit/pyFAI/blob/main/doc/source/usage/tutorial/ThickDetector/Parallax_model.ipynb
https://doi.org/10.1107/S2053273321007506

02/02/2026PyFAI tutorial: Jérôme KiefferPage 6

Ray-tracing of absorption in pixel depth

● Pixels:

– A→Length→Deposited energy

– B→Length→Deposited energy

– C→Length→Deposited energy

● Throw thousands of rays per pixel

● Build a (sparse) matrix with for each input pixel
provides the contribution to output pixels

– Similar to a convolution but where the the kernel size
changes from pixel to pixel

– Matrix construction takes seconds to minutes

● Possible to invert the effect using iterative methods

– Using scipy.sparse.linalg.lsmr

– MLEM for poissonian data.

● Not taking into account the integrating/counting nature of the detector

Sample

A
B
C

Ray

02/02/2026PyFAI tutorial: Jérôme KiefferPage 7

Simulation of the parallax effect in the sensor with pyFAI:

● Based on ray-tracing:

– Build a blurring operator by throwing thousands of rays per pixel

– Can be used to de-convolute with iterative methods (i.e. MLEM, …)

Same parameters
as ID13’s example

https://github.com/silx-kit/pyFAI/blob/main/doc/source/usage/tutorial/ThickDetector/raytracing.ipynb

https://github.com/silx-kit/pyFAI/blob/main/doc/source/usage/tutorial/ThickDetector/raytracing.ipynb

02/02/2026PyFAI tutorial: Jérôme KiefferPage 8

Exercises: Apply parallax effect on synthetic data

https://github.com/silx-kit/pyFAI/blob/main/doc/source/usage/tutorial/ThickDetector/Parallax_simple.ipynb

● Build a synthetic geometry

● Create a calibrant

● Simulate a powder diffraction
pattern and the image

● Perform the raytracing for the
detector

● Blur the image

● Integrate the images and observe
the effect of the parallax

https://github.com/silx-kit/pyFAI/blob/main/doc/source/usage/tutorial/ThickDetector/Parallax_simple.ipynb

02/02/2026PyFAI tutorial: Jérôme KiefferPage 9

Correction of the parralax effect ?

Different strategies to correct the effect:
● Pseudo-inversion (LSMR, MLEM, …)
● Take into account the effect in peak-position

02/02/2026PyFAI tutorial: Jérôme KiefferPage 10

Thick sensor approximation: math ⚠️ ⚠️

A= μ
cos(α)

POI

α

z

xSensor

Air

P(z)=A e
−μ z
cos(α)

⟨ x ⟩=∫
0

∞

x (z)⋅P(z)dz

x (z)=z⋅tan (α)

P(z) follows Beer-Lambert law:

Geometrically, one has:

Average value of an observable:

Normalization: 1=∫
0

∞

P(z)dz

Which leads to:

P(z)= μ
cos(α)

⋅e
−µz
cos(α)

⟨ x ⟩=∫
0

∞ z⋅tan (α)⋅μ
cos(α)

e
−μ z
cos(α) dz=

sin (α)
μ

Δ x=sin (α)
μ

02/02/2026PyFAI tutorial: Jérôme KiefferPage 11

Thick-sensor model: quantification

● All photons are caught

● Does not depend on the sensor thickness ! Δ x=sin (α)
μ

Does not match observation !
→ Displacement decreases
with incident angle

On the resolution function for powder diffraction with area detectors
https://doi.org/10.1107/S2053273321007506

No inflection point !

https://doi.org/10.1107/S2053273321007506

02/02/2026PyFAI tutorial: Jérôme KiefferPage 12

Thin-sensor convoluted with beam profile (1d), quantification

http://www.silx.org/doc/pyFAI/dev/usage/tutorial/ThickDetector/Parallax_model.html

Issues:
* Requires the beam profile
* Numerical convolution Search for a solution independent of the profile

Inflection point
around 30°

Linear at lower angles

http://www.silx.org/doc/pyFAI/dev/usage/tutorial/ThickDetector/Parallax_model.html

02/02/2026PyFAI tutorial: Jérôme KiefferPage 13

Thin-sensor without beam profile: math ⚠️ ⚠️

P(z)=A e
−μ z
cos(α)=A e−μ ' z

E
p =

 e

POI

α

z

x

⟨x⟩=∫
0

e

x (z)⋅P(z)dz

x (z)=z⋅tan (α)

P(z) follows Beer-Lambert law:

Geometrically, one has:

Average value of an observable:

Since we have signal,
a photon has interacted: 1=∫

0

e

P(z)dz

Which leads to:

With: µ'= µ
cos(α)

P(z)=μ '⋅ e−µ' z

1−e−µ' e

⟨ x ⟩=
sin (α)
µ

⋅
1−(1+µ' e)e−µ' e

1−e−µ' e

After integration ...

, A constant

02/02/2026PyFAI tutorial: Jérôme KiefferPage 14

Comparison of models:

Inflection point
around 30°

Linear at lower angles

Same behavior at large angle
without numerical noise

02/02/2026PyFAI tutorial: Jérôme KiefferPage 15

Demo time (bis)

● Implementation in geometry engine of pyFAI

Makes the geometry engine of pyFAI much slower for now …
→ rough edges still present & bugs probable !

02/02/2026PyFAI tutorial: Jérôme KiefferPage 16

Change of PONI-file format to cope for parallax corrections

● With pyFAI v2025.12+ there is a new PONI-file version:

– Version 2.1 (when the parallax is disabled, backwards compatible)

– Version 3.0 (when the parallax is enabled, backwards incompatible)

New button to activate
parallax correction

Some limitations:
● Refinement does not always

converge better.
● Calculation are slower for now.

02/02/2026PyFAI tutorial: Jérôme KiefferPage 17

Conclusions

● PyFAI offers several ways to deal with parallax correction:

– Calculate the blurring effect via raytracing then de-smear with iterative
algorithm (slow)

– Integrate the effect in the geometry engine

● For this the sensor composition and thickness has been tabulated.

– For all 300 detectors tabulated

– Thanks to:

● Help of all detector manufacturers,

● Detector group at ESRF

● Integration work by Gudrun Lotze.

● All this tutorial was on the peak position …
… not on their intensity or profile of the peaks.

– Absorption efficiency correction is already available in pyFAI

● but neither addresses the profile modification

02/02/2026PyFAI tutorial: Jérôme KiefferPage 18

Questions ?

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

