
ESRF User Meeting 2025
PyFAI tutorial
Jérôm� Ki�ff�r
Edgar Gutiérr�z F�rnánd�z
10/02/2025



edgar.gutierrez-fernandez@esrf.fr

PyFAI tutorial - overview

• 10/02/2025 / 14:00 – 17:00
• Each us�r sh�uld us� its �wn c�mput�r (Wind�ws, Linuc, MacOS)
• 1st half: concepts of pyFAI

• Motivations
• Applications
• Working philosophy

• Coffee break (~15 minutes)
• 2nd half: hands-on

• Installation of python: venv/conda/visa
• Installation of pyFAI
• Calibration GUI
• AzimuthalIntegratrion
• Other pyFAI applications: integrate, diffmap-view, worker…



edgar.gutierrez-fernandez@esrf.fr

PyFAI = Python Fast Azimuthal Integrator

Data collectionSetup experiment

*BM28

Data reduction Data analysis



edgar.gutierrez-fernandez@esrf.fr

PyFAI = Python Fast Azimuthal Integrator

Data collectionSetup experiment

*BM28

Data reduction

Calibration

3D geometry

Diffraction mapping



edgar.gutierrez-fernandez@esrf.fr

• Scattering is the deflection of photons upon interaction with matter.
X-ray scattering techniques

Source: Wikipedia
CC-BY-SA: Jeff Dahl

X ray
Monochromatic

2D camera

Sample

Bragg spots:
diffraction from
single crystal

Debye-Scherrer
ring: diffraction from
polycrystals

M�n�chr�matic b�am
Δλ≈0

2-Dim�nsi�nal d�t�ct�rs
Shap� = (x,y)

Elastic scatt�ring
Einc = Escat
ΔE=0



edgar.gutierrez-fernandez@esrf.fr

• If the material is crystalline, the scattered
photons create constructive interferences,
like water waves.

• Constructive interference between scattered
X-ray takes place if Bragg relation is fulfilled:

𝒏𝝀 = 𝟐𝒅 𝐬𝐢𝐧𝜽

X-ray scattering techniques: diffraction / scattering
• If the material is disordered, the scattered
photons create broad distributions of
intensity.

• More ambiguous and hard to analyze.
Usually requires complementary techniques.

https://biosaxs.com/technique.html



edgar.gutierrez-fernandez@esrf.fr

• The study of highly crystalline materials
(metals, ceramics, oxides…) is named
‘diffraction’’.

• Powder Diffraction: isotropic
• Phase identification
• Crystallinity
• Lattice parameters
• Thermal expansion
• Phase transition
• Strain/crystallite size

X-ray scattering techniques: diffraction / scattering
• The study of largely/inherently disordered
materials (polymers, proteins, colloids…) is
named ‘scattering’’.

• Wide-Angle X-ray Scattering (WAXS):
analog to diffraction:

• Phase identification
• Crystalllinity/orientation

• Small-Angle X-ray Scattering (SAXS):
micro/nano scale prove:

• Particle shape/surface
• Proteins domains
• Protein folding
• Colloid parameters
• Fiber orientation



edgar.gutierrez-fernandez@esrf.fr

• The study of highly crystalline materials
(metals, ceramics, oxides…) is named
‘diffraction’’.

• Powder Diffraction: isotropic

X-ray scattering techniques: diffraction / scattering
• The study of largely/inherently disordered
materials (polymers, proteins, colloids…) is
named ‘scattering’’.

• WAXS: analog to diffraction.

• SAXS: micro/nano scale prove.

• Both rely on the same transformation: 2D image to azimuthal average.

• PyFAI is the first tool to be used after data acquisition.



edgar.gutierrez-fernandez@esrf.fr

pyFAI: pythonic tool to reduce 2D patterns

Why pyFAI?

• Python as the most accessible and
widespread programming language in
science.

• Developed and generally used at the ESRF:
• Data acquisition (BLISS)
• Data visualization (silx)
• Data analysis (PyMCA)

• PyFAI combines python API with fast
algorithms written in Cython and OpenCL



edgar.gutierrez-fernandez@esrf.fr

Alternatives to pyFAI
 Fit2D

 MIT licensed from ESRF, written in Fortran, now discontinued

 XRDUA

 GPL licensed from U. Antwerp, written in IDL, focuses on diffraction mapping

 DAWN

 EPL licensed from Diamond Light Source, written in Java

 DataSqueeze

 Freeware from U. Pennsylvania

 Foxtrot

 Commercial, from XENOCS & SOLEIL synchrotron, written in Java

 MAUD

 Freeware from U. Trento, written in Java

 GSAS-II

 Freeware tool from U. Chicago & APS, written in Python

 Scikit-beam

 BSD licensed from NSLS-II, written in Python



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector

Geometry

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector

Geometry

Integrator

RAW DATA



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector

Geometry

Integrator

RAW DATA PROCESSED DATA



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)

Detector information:
• Pixel size 1
• Pixel size 2
• Binning: default (1,1)
• Max_shape
• Orientation (1→4)



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)

Detector information:
• Pixel size 1
• Pixel size 2
• Binning: default (1,1)
• Max_shape
• Orientation (1→4)

Most of the time, by knowing the
name of your detector is
enough!



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)

• Customized (generic) detector
Detector information:
• Pixel size 1
• Pixel size 2
• Binning: default (1,1)
• Max_shape
• Orientation (1→4)

Normally, this step is skipped as it is
done through the calibration graphical

interface

Bet: > 50% pyFAI crashes are related to wrong detector
shapes



edgar.gutierrez-fernandez@esrf.fr

Geometry instance
• A geometry is fully defined by:

• A detector instance

• Sample to detector distance (in meters)

• Wavelength of the beam (in meters)

• Three rotations of the detector

• Coordinates of the point of normal incidence
(PONI), from the sample to the detector
plane.

Normally, the calibration of the geometry is fully done
through the graphical interface.



edgar.gutierrez-fernandez@esrf.fr

Calibration of geometry: pyFAI-calib2
• Calibration is made after measuring a standard sample:

• LaB6, Cr2O3, AgBh…
• Choosing the correct detector (+ orientation, binning, mask…)
• Selecting the Debye-Scherrer rings associated to the standard
• Fitting the rings
• Refinement
• Validation
• Saving of .poni file

.poni file



edgar.gutierrez-fernandez@esrf.fr

Calibration of geometry: pyFAI-calib2
• Calibration is made after measuring a standard sample:

• LaB6, Cr2O3, AgBh…
• Choosing the correct detector (+ orientation, binning, mask…)
• Selecting the Debye-Scherrer rings associated to the standard
• Fitting the rings
• Refinement
• Validation
• Saving of .poni file

.poni file



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Detector

Geometry

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Integrator

*FiberIntegrator is targeted to Grazing Incidence
experiments



edgar.gutierrez-fernandez@esrf.fr

PyFAI: loading data

Integrator

RAW DATA



edgar.gutierrez-fernandez@esrf.fr

• Importing data is made through other python packages:
• FabIO
• Silx
• h5py

• Common file formats:
• .edf
• .tiff
• .h5

• Visualizing is made through:
• matplotlib
• seaborn
• silx

PyFAI: loading data



edgar.gutierrez-fernandez@esrf.fr

PyFAI: loading data

Integrator

RAW DATA integrate1d



edgar.gutierrez-fernandez@esrf.fr

PyFAI: loading data

Integrator

RAW DATA integrate2d



edgar.gutierrez-fernandez@esrf.fr

What happens during an integration
 1) Get the coordinates of every corner of every pixel of the detector (in meters).

 3 coordinates per corner, 4 corners per pixel
 Detector of 1000x1000 = 106 pixels = 1Mpix * 4 (corners) * 3 (coordinates) * 4 (bytes) = 48 Mbytes

 2) Offset the detector’s origin to the PONI and rotate around the sample.
 3) Calculate the radial (2theta) and azimuthal (chi) positions of each corner.
 4) Calculate normalization matrix: polarization, solid-angle, flat-field...
 5) Assign each pixel to one or multiple bins.
 6) Histogram bin position with associated intensities
 7) Histogram bin position with associated normalizations
 8) Return bin position and the ratio of sum of intensities / sum of norm.



edgar.gutierrez-fernandez@esrf.fr

Integration algorithms
 Histogram

 Pixel by pixel procedure.
 Each pixel is split over the bins it covers.
 Corner coordinates have to be calculated (4x

slower initialization).
 The slow down is function of the oversampling

factor, for every image.
 Serial read → Random write

 Sparse Matrix Multiplication
 Bin by bin procedure.
 Creates and stores a sparse matrix with all the

integration information.
 The sparse matrix can be huge: longer

initialization related to the oversampling factor.
 No performance penalty on the integration itself.
 Serial write ← Random read



edgar.gutierrez-fernandez@esrf.fr

Pixel splitting
 No splitting: one pixel to one single bin upon in which bin the center of the pixel is falling.

Bin (k)

Bin (k-1)

Bin (k+1)

The intensity of each bin is the sum of the intensity
of the pixels whose center falls into the radius bin



edgar.gutierrez-fernandez@esrf.fr

Pixel splitting
 Splitting: each pixel intensity is shared between consecutive bins.

Bin (k)

Bin (k-1)

Bin (k+1)

*Full pixel splitting

Each bin is the sum of the intensities of different
pixels multiplied by a weight between 0.0 and 1.0



edgar.gutierrez-fernandez@esrf.fr

Implementation

Python
• Use numpy methods
• No initialization
• Slow, no cache
• Non-recommended (not popular)

Cython
• Use cython methods
• No initialization
• Faster than python, no cache
• Recommended to integrate

10s frames

OpenCL
• Use parallelization through CPU/GPU
• Initialization ~1-3 s
• Cache
• Potentially fast, depending on the GPU
• Best option for large data



edgar.gutierrez-fernandez@esrf.fr

pyFAI interfaces
• Applications:

• GUI applications: pyFAI-calib2, pyFAI-integrate, pyFAI-diffmap-view
• Batch mode: worker
• Scriptable applications: pyFAI-average, pyFAI-saxs, pyFAI-waxs,
diff_tomo

• Python interface:
• High level, direct API: scripts, Jupyter notebook
• Mid level: manually creation of detectors, integrators, units…
• Low level: manually setting the integrator engines

It is up to the user to choose the way he/she uses
pyFAI



edgar.gutierrez-fernandez@esrf.fr

Latest news from pyFAI

 PyFAI-2025.1.0: release on 31/01/2024
 Median filter (cython, OpenCL)
 Unified WorkerConfiguration
 New API for Grazing Incidence experiments



edgar.gutierrez-fernandez@esrf.fr

Project management: Silx & pyFAI

 Compatible with Windows, MacOS, Linux
 MIT licensed: compatible with both science and business
 PyFAI is embedded in the silx-kit project: https://github.com/silx-

kit/
 Silx-kit project is python-based, developed at the ESRF and

includes:
 Open to collaborations:

 About 20 direct contributors from ESRF, from other
synchrotrons, XFELs (Soleil, NSLS-II, Petra-III, Eu-XFEL) and
companies (Xenocs)

 Used by ~90 other projects from many other X-ray sources in
the world (SLAC, ALS, APS, ALBA, NSLS-II, Petra-III, Soleil,
Diamond, SLS, MaxIV...)

https://github.com/silx-kit/
https://github.com/silx-kit/


edgar.gutierrez-fernandez@esrf.fr

pyFAI user community

 PyFAI is used in most European and American synchrotrons/FELs

 User support is provided via the mailing list: pyFAI@esrf.fr (185 subscribers)
 Bugs are discussed via Github issue tracker

 https://github.com/silx-kit/pyFAI/issues

mailto:pyFAI@esrf.fr
https://github.com/silx-kit/pyFAI/issues


edgar.gutierrez-fernandez@esrf.fr

Reasons to choose pyFAI

 Faster than others
 First tool using sparse matrix multiplication to perform integration
 All computation intensive kernels are ported to C, C++ or OpenCL
 PyFAI is the only azimuthal integration tool benefiting from GPU

 Versatile (increasing with every version)
 Wide space to vary the integration protocol
 Generic geometry
 Most detectors already defined (+ custom detector through Nexus file)
 Graphical user interface alternatives (thanks to Valentin Valls)



edgar.gutierrez-fernandez@esrf.fr

Acknowledgements

 Main author: Jerome Kieffer
 Contributors: 43
 Former data analysis unit colleagues:

 Valentin Valls
 Loic Huder
 Thomas Vincent
 Claudio Ferrero

 ESRF Beamlines:
 BM01, BM02, ID02, ID11, ID13, ID15a,

ID15b, ID21, ID22, ID23, BM26, ID27,
BM28, ID28, BM29, ID29, ID30, ID31...

 Trainees:
 Aurore Deschildre
 Frederic Sulzmann
 Guillaume Bonamis

 Other synchrotron/labs
 Soleil: Fred Picca
 Clemens Prescher (Dioptas)
 Sesame: Philipp Hans
 NSLS-II, ALS, APS…

 International Grants:
 LinkSCEEM-2 grant:

 Dimitris Karkoulis
 Giannis Ashiotis
 Zubair Nawaz



ESRF User Meeting 2025
PyFAI tutorial
Jérôm� Ki�ff�r
Edgar Gutiérr�z F�rnánd�z
10/02/2025


