

Welcome to the T5: Data reduction for scattering experiments

ESRF user meeting 2023

06/02/2023ESRF users meeting tutorial 2023Page 3

Python Fast Azimuthal Integration tool-set

Data reduction tools for
scattering experiments

Jérôme Kieffer
Algorithms & scientific Data Analysis

06/02/2023ESRF users meeting tutorial 2023Page 4

Layout

● Power diffraction and scattering of X-Rays

● What is azimuthal integration of 2D detector data ?

● The need for faster data processing …

● … without compromising quality

● PyFAI:

– Ecosystem and user community

– Within the silx collaboration

● Conclusions

06/02/2023ESRF users meeting tutorial 2023Page 5

X-ray scattering experiments
Source: Wikipedia
CC-BY-SA: Jeff Dahl

X ray
Monochromatic

2D camera
● Light is reflected as on mirrors:

– No energy change (elastic scattering)

– Direction of diffracted beam depends on the crystalline cell and its orientation

– Intensity of the diffracted beam depends on the the content of the cell

→ Bragg’s Nobel price in 1915

● Multiple small crystals (powder)

– Isotropic cones gives ellipses
when intersected by a flat detector

Ice ring: diffraction
from powder

Sample

Bragg spots:
diffraction from
single crystal

Source: Wikipedia
Klaus-Dieter Liss

06/02/2023ESRF users meeting tutorial 2023Page 6

Powder diffraction and small angle scattering

Application of powder diffraction:

– Phase identification (mapping)

– Crystallinity

– Lattice parameters

– Thermal expansion

– Phase transition

– Crystal structure

– Strain and crystallite size

Application of small angle scattering

– Micro/nano-scale structure

– Particle shape

– Protein domains

– Protein folding

– Colloids

– Fiber orientation

● Both rely on the same transformation: 2D image → azimuthal average

Azimuthal

integration

06/02/2023ESRF users meeting tutorial 2023Page 7

Fast Azimuthal Integration using Python

● Why Python ?

– It is the main programming language used in science and at ESRF: Bliss, PyMca, …

● But isn’t Python slow ?

– Maybe … Python is just a convenient interface, what matters is written in C & compiled

06/02/2023ESRF users meeting tutorial 2023Page 8

rmin rmax

Radial bin

Pixels falling into the radial bin
(without pixel splitting)

● Pixel-wise corrections:

Where: I
0
 is the incoming flux (pixel independent)

– I
raw

 and I
dark

 are the signal measured from the detector

– F is the flat-field correction
– Ω is the solid angle for this pixel
– P is the polarization factor
– A is the parallax correction factor

● Averaging over a bin defined by the radius r:

– Need for pixel splitting?

– c
i
 being the fraction of the pixel i contributing to bin

r

● Associated uncertainty propagation:

– Assuming there is no correlation between pixels

– Pixel splitting can create correlation between bins...

I cor=
I raw−I dark
F⋅Ω⋅P⋅A⋅I 0

=
signal

normalization

How it works

⟨ I ⟩r=
∑
i∈binr

c i⋅signal i

∑
i∈binr

c i⋅normalizationi

σ (⟨ I ⟩r)=
√ ∑
i∈bin r

c i
2
⋅variancei

∑
i∈binr

c i⋅normalizationiMath from Kieffer et al.; J. Synch. Radiation (2020)
 https://doi.org/10.1107/S1600577520000776

σ (I r)=√
∑
i∈binr

c i
2⋅variance i

∑
i∈binr

c i
2
⋅normalizationi

2

https://doi.org/10.1107/S1600577520000776

06/02/2023ESRF users meeting tutorial 2023Page 10

Concepts in PyFAI

● Image

2D array of pixels as numpy array
read using silx, fabio, h5py, ...

● Azimuthal integrator: core object

● powder diagram using integrate1d

● “cake” image, azimuthally regrouped using integrate2d

● Detector

● Calculates the pixel position (center and corners)

● Calculates and stores the mask of invalid pixels.

→ saved as a HDF5 file

● Geometry

Position of the detector from the sample & incoming beam

→ saved as PONI-file

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

06/02/2023ESRF users meeting tutorial 2023Page 11

Geometry in pyFAI

From the sample's point of view,
looking towards the detector :

 ↗ rot1: moves detector → to the right
 ↗ rot2: moves detector ↓ downwards
 ↗ rot3: moves detector clockwise ↷

rot2

Incoming X-Rays

Origin:
sample

x3

x1

x2

Distance

Point O
f Normal In

cidence :

PONI = (P1, P
2, P

3=0)

d1

d2

d3

rot1

rot3

 Scattered beam

2θ

Detector's origin:
lower left, looking from

the sample

PONI-file

Beam center

Area detector

Parameters:
* 3 distances in meters: dist, poni

1
, poni

2

* 3 rotations in radians: rot
1
, rot

2
, rot

3

+ wavelength || energy

06/02/2023ESRF users meeting tutorial 2023Page 12

● Geometry is best determined from the analysis of a known reference sample

● This calibration step is preferred to measuring distances and beam center position

– The prerequisite is:

● detector geometry and mask,

● calibrant (LaB6, CeO2, AgBh, …)

● wavelength or energy used

– Only the position of the detector and the rotation needs to be refined:

● 3 translations: dist, poni1 and poni2

● 3 rotations: rot1, rot2, rot3

● It is divided into 4 major steps:

1) Extraction of groups of peaks

2) Identification of peaks and groups of peaks belonging to same ring

3) Least-squares refinement of the geometry parameters on peak position

4) Validation by a human being of the geometry

● PyFAI assumes this setup does not change during the experiment

Tutorial 1:

http://www.silx.org/doc/pyFAI/dev/usage/cookbook/calib-gui/index.html

Calibration in pyFAI

http://www.silx.org/doc/pyFAI/dev/usage/cookbook/calib-gui/index.html

06/02/2023ESRF users meeting tutorial 2023Page 13

What happens during an integration

1) Get the pixel coordinates from the detector, in meter.

There are 3 coordinates per pixel corner, and usually 4 corners per pixel.

1Mpix image → 48 Mbyte !

2) Offset the detector's origin to the PONI and rotate around the sample

3) Calculate the radial (2q) and azimuthal (c) positions of each corner

4) Assign each pixel to one or multiple bins.

If a look-up table is used, just store the fraction of the pixel.

Then for each bin sum the content of all contributing pixels.

5) Histogram bin position with associated intensities

6) Histogram bin position with associated normalizations (i.e. solid angle)

7) Return bin position and the ratio of sum of intensities / sum of norm.

→ Tutorial 2

06/02/2023ESRF users meeting tutorial 2023Page 14

Example of simplified implementation in Python

06/02/2023ESRF users meeting tutorial 2023Page 15

But speed does matters ...

● New EBS source

– 50x brighter

– User mode since 2020

● Faster detectors

– Eiger2 detector (2-20 kHz)

– Jungfrau detector (2 kHz)
→ Stream limited to 2 GB/s/detector !

Source: UCLA Coherent Imaging

06/02/2023ESRF users meeting tutorial 2023Page 16

The gap between computing and acquisition grows

● Most other codes use the same algorithm based on histograms …
… and reach the same speed:

– Fit2D written in Fortran

– SPD written in C

– Foxtrot written in Java

● The algorithm needs to be changed !

– Histograms cannot easily/efficiently be parallelized !

– Re-develop based on parallel algorithms
→ CSR sparse matrix dot product is many-core friendly
Described in https://arxiv.org/abs/1412.6367v1 (2014)

– Several other program copied this idea:

● Saxsdog https://arxiv.org/abs/2007.02022 (2020),

● MatFRAIA https://doi.org/10.1107/S1600577522008232 (2022)

https://arxiv.org/abs/1412.6367v1
https://arxiv.org/abs/2007.02022
https://doi.org/10.1107/S1600577522008232

06/02/2023ESRF users meeting tutorial 2023Page 17

Look-up table integration using only Python

Sources of this demo available on:
https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

06/02/2023ESRF users meeting tutorial 2023Page 18

Advantages of histograms vs CSR matrix multiplication

● Easier to understand

● Low memory consumption

● Fast initialization

● Faster, even on a single core

● Many-core friendly

– OpenMP and OpenCL

● Pretty slow

● Hardly parallelizable

● Slower initialization

● The sparse matrix can be large

Histograms Sparse matrix multiplication

Pro

Con

Rule of thumb: < 5 frames ≥ 5 frames

06/02/2023ESRF users meeting tutorial 2023Page 19

Benchmark: Let’s speak about speed !

6-year-old workstation: CPU from 2016, GPU from 2013

06/02/2023ESRF users meeting tutorial 2023Page 20

Moiré effect

High frequency noise issue

Where pixel splitting comes back

06/02/2023ESRF users meeting tutorial 2023Page 21

Example with SAXS data integrated in 2D

Pilatus 200k:
~500 x 400 pixels

2D averaging over 512x360 bins

Without pixel splitting With pixel splitting

⚠️ creates bin cross-correlation ⚠️

06/02/2023ESRF users meeting tutorial 2023Page 22

Pixel splitting schemes available in pyFAI

● No pixel splitting: default histograms

– Each pixel contributes to a single bin of the result

– No bin correlation but noisy

– The pixel has no surface: sharpest peaks

● Bounding-box pixel splitting

– The smoothest integrated curve

– Blurs a bit the signal

● Pseudo pixel splitting (deprecated)

– Scale down the bounding box to the pixel area,
before splitting.

– Good cost/precision compromise, similar to FIT2D

● Full pixel splitting

– Split each pixel as a polygon on the output bins.

– Costly high-precision choice

06/02/2023ESRF users meeting tutorial 2023Page 23

Impact of pixel splitting on integration speed

● Histogram based algorithms:

– Each pixel is split over the bins it covers.

– The corner coordinates have to be calculated (4x slower initialization)

– The slow down is function of the oversampling factor, for every image

● Sparse matrix multiplication based algorithms

– The sparse matrix contains already the pixel splitting scheme

– Longer initialization time related to the oversampling factor

– There are NO performance penalty on the integration itself

All those consideration are independent of the programming language

Nevertheless, Python which is interpreted is expected to be 1000x slower than:
● compiled code like C, C++, Fortran, ...
● JIT compiled code like Java, Julia or numba

06/02/2023ESRF users meeting tutorial 2023Page 24

Impact of averaging & pixel splitting on precision

● This demonstrates that:

– Intensity correction needs to be performed together with integration, not before!

– Pixel splitting

● Actually creates bin-correlation

● Affects precision of the propagated uncertainties

● Full demonstration at: http://www.silx.org/doc/pyFAI/0.20.0/usage/tutorial/Variance/Variance.html

● No splitting / No intensity correction

● No splitting / intensity correction prior int.

● No splitting / intensity correction while int.

● BBox splitting / intensity correction while…

● Full splitting / intensity correction while…

χ2 value

O
cc

ur
re

nc
es

● Test case:

– SAXS-like data, 1000 frames with synthetic distribution, 5e5 pairs of curves compared.

http://www.silx.org/doc/pyFAI/0.20.0/usage/tutorial/Variance/Variance.html

06/02/2023ESRF users meeting tutorial 2023Page 25

Layers in pyFAI

● Applications level:

– GUI applications: pyFAI-calib2, pyFAI-integrate, diff_map

– Scriptable applications:pyFAI-average, pyFAI-saxs, pyFAI-waxs, diff_tomo, …

● Python interface:

– Top level: azimuthal integrator

– Mid level: calibrant, detector, geometry, calibration

– Low level: rebinning/histogramming engines (Cython + OpenMP or OpenCL)

● Question: how to define the right balance ?

It is up to you !

● Applications in bold will be demonstrated in the introduction tutorial.

F
l
e
x
i
b
i
l
i
t
y

E
a
s
e

o
f

u
s
e

Ideally used from

● High speed sigma-clipping

– Enforce normal distribution in every azimuthal bin :

● Remove single crystal contribution from powder diffraction

● Several error models: poissonian, azimuthal, hybrid

– Enables:

● Single crystal frame compression (10x-200x, lossy compression)

● Peak-finding: 250 Hz / GPU

– Sponsored by serial crystallography (ESRF ID29, MX)

● Square out all integration engines:
– Any type of integration: 1d (averaging) and 2d (caking)
– Any type of pixel-splitting: without, bounding-box or full splitting
– Any type of algorithm: histogram or sparse matrix multiplication
– Any type of implementation: Python, Cython (C++) and OpenCL (GPU)

LATEST NEWS FROM PYFAI

06/02/2023ESRF users meeting tutorial 2023Page 27

Project management

Silx & pyFAI

06/02/2023ESRF users meeting tutorial 2023Page 28

PyFAI is yet another azimuthal integration tool

● Written in Python (compatible with 2.7, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11)

– Free, fast and portable: (Windows, MacOS, Linux)

– MIT licensed: compatible with both science & business

– Part of the silx collaboration on data analysis initiated by ESRF

– Graphical user interface using Qt5

● Open to collaboration

– About 20 direct contributors,

● Mainly from ESRF

● Also from other synchrotrons and XFELs:

– Soleil, NSLS-II, Petra-III, Eu-XFEL
● Industrial contributions from Xenocs

– Used by ~90 other projects from all the largest X-ray sources in the world

● EuXFEL, SLAC, ALS, APS, NSLS-II, Petra-III, Soleil, Diamond, SLS, Max-IV, …

● Avoid compromises:

– no difficulty is hidden

06/02/2023ESRF users meeting tutorial 2023Page 29

User community of pyFAI

● PyFAI is used in most European and American synchrotons/FELs

● User support is provided via the mailing list: pyFAI@esrf.fr

– 166 people subscribed to the list 2023 (154, 142, 137, 132, 112)

– limited activity (~1 thread/month)

● Bugs are discussed via the Github issue tracker:

– https://github.com/silx-kit/pyFAI/issues

http://www.silx.org/doc/pyFAI/dev/project.html#getting-help

PyFAI mailing list subscriber

grouped by mail domain

ESRF

France academic

Germany academic

Europe, other ac.

Gmail or Hotmail

USA academic

Private companies

Other academic

mailto:pyFAI@esrf.fr
https://github.com/silx-kit/pyFAI/issues
http://www.silx.org/doc/pyFAI/dev/project.html#getting-help

06/02/2023ESRF users meeting tutorial 2023Page 30

Reasons to choose pyFAI

● Faster than others

– First tool using sparse matrix multiplication to perform integration

– All computation intensive kernels are ported to C, C++ or OpenCL

– PyFAI is the only azimuthal integration tool benefiting from GPU

● More versatile (hackable) than other

– Many integration space already exists ...

● you can add your own easily

– Its geometry is so generic it matches any configurations

● SAXS, WAXS, moving detectors …

– Most detectors are already defined

● Each detector can be adapted, and saved in a Nexus file

– It has a nice user interface thanks to Valentin !

● Part of the silx collaboration

– Bus-count slightly larger than one !

06/02/2023ESRF users meeting tutorial 2023Page 31

silx-kit: join efforts, share the maintenance

06/02/2023ESRF users meeting tutorial 2023Page 32

silx-kit: Shared development around:

● User interface

– Common interface to Qt and soon jupyter-lab

– Common visualization widgets

● GPU computing

– Common initialization

● Scientific data analysis

– Multi-threaded implementation of core algorithms

06/02/2023ESRF users meeting tutorial 2023Page 33

Management of the silx-kit project

● Public project hosted at github

https://github.com/silx-kit/silx

● Continuous testing

Linux, Windows and macOS

● Nightly builds

– Debian packages

● Weekly meetings

● Quarterly releases

● Code camps before release

● Continuous documentation

http://www.silx.org/doc/silx/

https://github.com/silx-kit/silx
http://www.silx.org/doc/silx/

06/02/2023ESRF users meeting tutorial 2023Page 35

Outcome of the silx toolkit (2015-2018)

06/02/2023ESRF users meeting tutorial 2023Page 36

3D view of the diffraction setup

06/02/2023ESRF users meeting tutorial 2023Page 37

3D view of the diffraction setup

06/02/2023ESRF users meeting tutorial 2023Page 38

Calibration tools: Qt5 based

06/02/2023ESRF users meeting tutorial 2023Page 39

Calibration tools: Jupyter-lab

06/02/2023ESRF users meeting tutorial 2023Page 40

Acknowledgments

● Former data analysis unit colleagues:

– Valentin Valls

– Loïc Huder

– Thomas Vincent

– Claudio Ferrero†

● Other synchrotron/labs

– Soleil: Fred Picca

– Clemens Prescher (Dioptas)

– Sesame: Philipp Hans

– NSLS-II, ALS, APS, ...

● International Grants:

– LinkSCEEM-2 grant

● Dimitris Karkoulis

● Giannis Ashiotis

● Zubair Nawaz

● ESRF Beamlines:

– BM01, BM02, ID02, ID11,
ID13, ID15a, ID15b, ID21,
ID22, ID23, BM26, ID27, ID28,
BM29, ID29, ID30, ID31 ...

● Trainees:

– Aurore Deschildre

– Frederic Sulzmann

– Guillaume Bonamis

06/02/2023ESRF users meeting tutorial 2023Page 41

Questions ?

	Slide 1
	Slide1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

