ESRF | The European Synchrotron

ESRF USER
ORGANISATION

ESRF | The European Synchrotron

Welcome to the T5: Data reduction for scattering experiments

ESRF user meeting 2023

Python Fast Azimuthal Integration tool-set

Data reduction tools for
scattering experiments

Jérome Kieffer
Algorithms & scientific Data Analysis

Page 3 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

ot

* Power diffraction and scattering of X-Rays
 What is azimuthal integration of 2D detector data ?
* The need for faster data processing ...
* ... without compromising quality
 PyFAlI:

- Ecosystem and user community

- Within the silx collaboration

e Conclusions

Page 4 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

X-ray scattering experiments

Source: Wikipedia
CC-BY-SA: Jeff Dahl

Bragg spots:
diffraction from
single crystal

X ray
Monochromatic > @ i .
Samplé\\

Ice ring: diffraction
from powder

2D camera
* Lightis reflected as on mirrors:

- No energy change (elastic scattering)
- Direction of diffracted beam depends on the crystalline cell and its orientation

- Intensity of the diffracted beam depends on the the content of the cell

.]) image plate
— Bragg’s Nobel price in 1915 nA = 2dsinf, Debye-scherrer 02001

cones__amiiiu

* Multiple small crystals (powder)

- Isotropic cones gives ellipses

when intersected by a flat detector Source: Wikipedi ’

Klaus-Dieter Liss
Page 5 ESRF users meeting tutorial 2023 06/02/2023

The European Synchrotron | ES

. Powder diffraction and small angle scattering

Application of powder diffraction: Application of small angle scattering
- Phase identification (mapping) — Micro/nano-scale structure
- Crystallinity - Particle shape
— Lattice parameters — Protein domains
— Thermal expansion - Protein folding
— Phase transition - Colloids
- Crystal structure - Fiber orientation

- Strain and crystallite size

* Both rely on the same transformation: 2D image — azimuthal average

Azimuthal "

~integration .,

20() i
Page 6 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

Intensity

Azimuthal angle x 1°)

Fast Azimuthal Integration using Python

A

Fast Azimuthal Intezration

1o

18

NI

0

Scatterng angle 28 (7]

2l

Average Calibrate
1d and 2d 3d geometry <

o 5 13 15 0 25 E1]
Scattering angle 28 {7)

* Why Python ?

- Itis the main programming language used in science and at ESRF: Bliss, PyMca, ...

 Butisn’t Python slow ?

- Maybe ... Python is just a convenient interface, what matters is written in C & compiled

Page 7 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

_Howitworks .

 Pixel-wise corrections: I I)
raw ‘dark _ Slgnal

I.,.= =
“" F-Q-P-A-I, normalization

Where: l, is the incoming flux (pixel independent) —

| Pixels falling into the radial bin
|, and | . are the signal measured from the detector % (without pixel splitting)
|

ra

F is the flat-field correction
Q is the solid angle for this pixel

Radial bin

P is the polarization factor

A is the parallax correction factor

 Averaging over a bin defined by the radius r:

. gy Z Ci'Signal,' Imin Fmax
- Need for pixel splitting? (1) =t
r— . li . '
- ¢, being the fraction of the pixel i contributing to bin_ Ezb:n € normatization,
* Associated uncertainty propagation: > c2-variance,
U(Ir): i€ bin, . ‘
- Assuming there is no correlation between pixels 2. c;-normalization;

i€bin,

- Pixel splitting can create correlation between bins...

Z c,»z-variancei
O'(<I>r): i€bin, . .
Math from Kieffer et al.; J. Synch. Radiation (2020) Z ¢;-normalization;
https://doi.org/10.1107/S1600577520000776 tebin,

Page 8 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

https://doi.org/10.1107/S1600577520000776

. Concepts in PyFAI

* Image

2D array of pixels as numpy array

read using silx, fabio, hbpy, ... --
 Azimuthal integrator: core object m-
 powder diagram using integrate1d u-

- “cake” image, azimuthally regrouped using integrate2d

» Detector I

e Calculates the pixel position (center and corners))

e Calculates and stores the mask of invalid pixels. | M
— saved as a HDF5 file T 5
 Geometry
Position of the detector from the sample & incoming beam* -
— saved as PONI-file |

0 50 100 150 200 250 300 350

http://www.silx.org/doc/pyFAl/dev/geometry.html#detector-position

Page 10 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

. Geometry in pyFAl

Parameters:
* 3 distances in meters: dist, poni., poni, _
* 3 rotations in radians: rot., rot,, rot, PONI-file

+ wavelength || energy

From the sample's point of view,
looking towards the detector :

-. rot:: moves detector — to the right
= - rotz: moves detector | downwards
1007 | B . i : rots: moves detector ¥ clockwise

QOH

rota/

//5(2

Detector's origin: Origir;:\ Incoy,.
lower left, looking from sample M
the sample /S

Page 11 ESRF users meeting tutorial 2023 06/02/2023

The European Synchrotron | ESRF

Calibration in pyFAI

« Geometry is best determined from the analysis of a known reference sample
« This calibration step is preferred to measuring distances and beam center position
- The prerequisite is:
* detector geometry and mask,
e calibrant (LaBs, CeO:, AgBh, ...)
* wavelength or energy used
- Only the position of the detector and the rotation needs to be refined:

* 3 translations: dist, poni; and poni:
* 3 rotations: roty, rot,, rot;

* ltis divided into 4 major steps:

1)

2) ldentification of peaks and groups of peaks belonging to same ring
3)

4) Validation by a human being of the geometry

Extraction of groups of peaks

Least-squares refinement of the geometry parameters on peak position

* PyFAIl assumes this setup does not change during the experiment

Tutorial 1:

http://www.silx.org/doc/pyFAl/dev/usage/cookbook/calib-gui/index.html

Page 12 ESRF users meeting tutorial 2023 06/02/2023

http://www.silx.org/doc/pyFAI/dev/usage/cookbook/calib-gui/index.html

What happens during an integration

1) Get the pixel coordinates from the detector, in meter.
There are 3 coordinates per pixel corner, and usually 4 corners per pixel.
1Mpix image — 48 Mbyte !
2) Offset the detector's origin to the PONI and rotate around the sample
3) Calculate the radial (20) and azimuthal () positions of each corner
4) Assign each pixel to one or multiple bins.

If a look-up table is used, just store the fraction of the pixel.
Then for each bin sum the content of all contributing pixels.
5) Histogram bin position with associated intensities
6) Histogram bin position with associated normalizations (i.e. solid angle)

7) Return bin position and the ratio of sum of intensities / sum of norm.

— Tutorial 2

Page 13 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

Example of simplified implementation in Python

Common initialization step:

In [1]: import numpy
npt = 1024
y,x = numpy.ogrid[-512:512,-512:512]
radius = (x*x+y*y)**0.5

= radius.max()+0.1

data = numpy.random. random((1024, 1024))

Naive approach integration using corona extraction with masks:

In [2]: %%time
res_loop = numpy.zeros(npt)
for i in range(npt):
rinf = rmax * i / npt
rsup = rinf + rmax / npt
mask = numpy.logical and((rinf <= radius), (radius < rsup))
res loop[i] = data[mask].mean()

CPU times: user 1.04 s, sys: 0 ns, total: 1.04 s
Wall time: 1.04 s

Vectorized version using histograms:

In [3]: %% time
count_of pixels = numpy.histogram(radius, npt, range=[0, rmax])[0]
sum_of_intensities = numpy.histogram(radius, npt, weights=data, range=[0, rmax])[0]
res_vec = sum_of_intensities / count_of pixels

CPU times: user 19.5 ms, sys: 1.44 ms, total: 20.9 ms
Wall time: 19.4 ms
In [4]: # Speed-up: 50x, validation:
numpy .allclose(res_loop, res_vec)

Out[4]: True

Page 14 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ES

=

. But speed does matters ...

1026

18
« New EBS source 0 T

- 50x brighter L ﬂ ﬂ ﬂ l n ﬂ ﬂ ﬂ

- User mode since 2020 107) Electrons

Undulato:

..M“AJ APS
iy

3rd Generation SR

)
[
[—)

[
&

L}
[
(=]

(5]
(]

-10%

“ fiom

[[
[—) [—)
— —
=3 I
1 1

Roadrunner

>

Computer Speed (Mflop/s)

-y

(=]
)
1

\Blue Gene [~1(016
NEC Earth

Intel ASCI-Red =10 14
\.Cray 90

: NSLS
nd
106 o 274 Generation SR SSRL

1** Generation SR

L
oy
>

—

5

N\ Cray 2
N\ Cray X-MP

Cray 1

A

SIPEIIP 9 UI IPMIUSLUI JO S.IIPIO (T

102 = CDC 6600 1010

IBM 7090

(;peamy mu/mqo, 1o/s/uojoyd) duerLiq Aer-xX

.-103

Cu Ka Rotating Anode

12 orders of magnitude in 6 decades

100 Y
] | L 1 L} 1
1950 1960 1970 1980 1990 2000 2010 2020

Year Source: UCLA Coherent Imaging

<%
[
<

1]

 Faster detectors

- Eiger2 detector (2-20 kHz)
- Jungfrau detector (2 kHz)

— Stream limited to 2 GB/s/detector !

Page 15 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

The gap between computing and acquisition grows

* Most other codes use the same algorithm based on histograms ...
... and reach the same speed:

- Fit2D written in Fortran
- SPD written in C

- Foxtrot written in Java
* The algorithm needs to be changed !

- Histograms cannot easily/efficiently be parallelized !

- Re-develop based on parallel algorithms
— CSR sparse matrix dot product is many-core friendly
Described in https://arxiv.org/abs/1412.6367v1 (2014)

— Several other program copied this idea:

« Saxsdog https://arxiv.org/abs/2007.02022 (2020),
« MatFRAIA https://doi.org/10.1107/S1600577522008232 (2022)

Page 16 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

https://arxiv.org/abs/1412.6367v1
https://arxiv.org/abs/2007.02022
https://doi.org/10.1107/S1600577522008232

. Look-up table integration using only Python

Using a Sparse matrix multiplication

Those multiplication can take advantage of parallel hardware unlike histogram which require costly afamic operations. This trick is called "scatter to gather"
transformation in parallel programming.

In [5]: %% time
from scipy.sparse import csc_matrix
positions = numpy.histogram(radius, npt, range=[0,rmax])[1]
row = numpy.digitize(radius.ravel(), positions) - 1
size = row.size

col = numpy.arange(size)
dat = numpy.ones(size, dtype=float)
csr = csc_matrix((dat, (row, col)), shape = (npt, data.size))

print(csr.shape)

(1024, 1048576)
CPU times: user 60.5 ms, sys: 6.21 ms, total: 66.7 ms

wall time: 69.7 ms

In [6]: %%time
count_csr = csr.dot(numpy.ones(data.size))
sum_csr = csr.dot(data.ravel())
res c¢sr = sum_csr / count csr

CPU times: user 3.11 ms, sys: 3.1 ms, total: 6.21 ms
Wall time: 4.69 ms

In [7]: # Speed-up: 5x vs histograms, validation:
numpy.allclose(res csr, res vec)

Oout[7]1: True

Sources of this demo available on:
https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

Page 17 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron |

https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

Advantages of histograms vs CSR matrix multiplication

Histograms

Pro °* Easierto understand
* Low memory consumption

 Fast initialization

Sparse matrix multiplication

Faster, even on a single core
Many-core friendly

- OpenMP and OpenCL

Con °* Pretty slow

* Hardly parallelizable

Slower initialization

The sparse matrix can be large

Rule of thumb: < 5 frames

Page 18 ESRF users meeting tutorial 2023

> 5 frames

06/02/2023 The European Synchrotron | ESRF

. Benchmark: Let's speak about speed !

Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz / GeForce GTX TITAN

—l— integrateld legacy CPU serial
integrateld ng CPU_serial
—— integrateld legacy CPU_CSR_OpenMP
—8— integrateld ng CPU_CSR OpenMP
5004 s —M- integrateld legacy GPU _CSR _NVIDIA GeForce GTX TITAN

1000 ~

A -®- integrateld_ng_GPU_CSR_NVIDIA_GeForce_GTX_TITAN

’qj S
G 200 -
(@]
S
= 100
©
C
o
() 50_
(2]
o
o
© 20-
£
©
L 10

5_

2_

2 4 6 8 10 12 14 16
Image size in mega-pixels

6-year-old workstation: CPU from 2016, GPU from 2013

Page 19 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron |

|voréoot

High frequency noise issue

Where pixel splitting comes back

Page 20 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

Azimuthal

. Example with SAXS data integrated in 2D

Pilatus 200Kk:
~500 x 400 pixels

2D averaging over 512x360 bins

150

| e -
Without pixel splitting AL With pixel splitting

100
:—)O L

100 o

Azimuthal

0 0
-504 = -50
-100 -100
-150 e -150
0.5 10 L5 2.0 0.5 10 1.5 20
Radial

Radial

creates bin cross-correlation

Page 21 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

. Pixel splitting schemes available in pyFAl

No pixel splitting: default histograms N

— Each pixel contributes to a single bin of the result \

— No bin correlation but noisy \

— The pixel has no surface: sharpest peaks

Bounding-box pixel splitting \

- The smoothest integrated curve \

— Blurs a bit the signal

Pseudo pixel splitting (deprecated) N

- Scale down the bounding box to the pixel area,
before splitting. \

— (Good cost/precision compromise, similar to FIT2D

Full pixel splitting N

- Split each pixel as a polygon on the output bins. N\

— Costly high-precision choice \

Page 22 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

. Impact of pixel splitting on integration speed

* Histogram based algorithms:

— Each pixel is split over the bins it covers.
— The corner coordinates have to be calculated (4x slower initialization)

— The slow down is function of the oversampling factor, for every image

* Sparse matrix multiplication based algorithms

— The sparse matrix contains already the pixel splitting scheme
— Longer initialization time related to the oversampling factor

- There are NO performance penalty on the integration itself

All those consideration are independent of the programming language

Nevertheless, Python which is interpreted is expected to be 1000x slower than:
e compiled code like C, C++, Fortran, ...
* JIT compiled code like Java, Julia or numba

Page 23 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ES

. Impact of averaging & pixel splitting on precision

Test case:

- SAXS-like data, 1000 frames with synthetic distribution, 5e5 pairs of curves compared.
Integrated dnitegsatefAXSwsproximation

e . . . 30969 Fin, Chi~2 distribution

No splitting / No intensity correction o R @l == wMeasured distibution
GJ 3 !

No splitting / intensity correction prior int. % gggg

No splitting / intensity correction while int. % 13008 -
O 7568 -

BBox splitting / intensity correction while... O g

Full splitting / intensity correction while... =00 .

DD-HMHBEEEDD.BIEBEEBEEUDMDS 108 10 10M 15 115 AP PR
This demonstrates that: X* value

- Intensity correction needs to be performed together with integration, not before!
- Pixel splitting
* Actually creates bin-correlation

« Affects precision of the propagated uncertainties

Full demonstration at: http://www.silx.org/doc/pyFAl/0.20.0/usage/tutorial/Variance/Variance.html

e
H i
e

Page 24 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | SRF

http://www.silx.org/doc/pyFAI/0.20.0/usage/tutorial/Variance/Variance.html

. Layers in pyFAI

Applications level:

- GUI applications: pyFAl-calib2, pyFAl-integrate, diff_map

- Scriptable applications:pyFAl-average, pyFAl-saxs, pyFAI—waxs diff_ tomo
Python interface: |deally used from Jupyter
- Top level: azimuthal integrator

- Mid level: calibrant, detector, geometry, calibration

- Low level: rebinning/histogramming engines (Cython + OpenMP or OpenCL

._,H

* Question: how to define the right balance ? l
- -
It is up to you ! w W
-

Applications in bold will be demonstrated in the introduction tutorial.

Page 25 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

. LATEST NEWS FROM PYFAI

* High speed sigma-clipping

- Enforce normal distribution in every azimuthal bin :
 Remove single crystal contribution from powder diffraction
e Several error models: poissonian, azimuthal, hybrid
- Enables:
* Single crystal frame compression (10x-200x, lossy compression)
* Peak-finding: 250 Hz / GPU
— Sponsored by serial crystallography (ESRF 1D29, MX)

* Square out all integration engines:
- Any type of integration: 1d (averaging) and 2d (caking)
— Any type of pixel-splitting: without, bounding-box or full splitting
— Any type of algorithm: histogram or sparse matrix multiplication
- Any type of implementation: Python, Cython (C++) and OpenCL (GPU)

The European Synchrotron | ESRF

. Project management

Silx & pyFAl

Page 27 ESRF users meeting tutorial 2023 06/02/2023 The Europsan Synchratror | ESRE

. PyFAl is yet another azimuthal integration tool

* Written in Python (compatible with 274,36, 3.7, 3.8, 3.9, 3.10, 3.11)
- Free, fast and portable: (Windows, MacOS, Linux)

- MIT licensed: compatible with both science & business
- Part of the silx collaboration on data analysis initiated by ESRF
- Graphical user interface using Qt5

« Open to collaboration

- About 20 direct contributors,

* Mainly from ESRF
* Also from other synchrotrons and XFELs:

- Soleil, NSLS-II, Petra-lll, Eu-XFEL
* Industrial contributions from Xenocs

- Used by ~90 other projects from all the largest X-ray sources in the world
« EUXFEL, SLAC, ALS, APS, NSLS-II, Petra-lll, Soleil, Diamond, SLS, Max-lV, ...
 Avoid compromises:

- no difficulty is hidden

e o)
atg e

Page 28 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

. User community of pyFAI

 PyFAl is used in most European and American synchrotons/FELs

PyFAI mailing list subscriber

grouped by mail domain

« User support is provided via the mailing list: pyFAl@esrf.fr

- 166 people subscribed to the list 2023 (154, 142, 137, 132, 112)
- limited activity (~1 thread/month)

B ESRF

B France academic
Germany academic

W Europe, other ac.

B Gmail or Hotmail
USA academic

B Private companies
Other academic

* Bugs are discussed via the Github issue tracker:

- https://github.com/silx-kit/pyFAl/issues

http://Iwww.silx.org/doc/pyFAl/dev/project.htmi#getting-help

Page 29 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ES

mailto:pyFAI@esrf.fr
https://github.com/silx-kit/pyFAI/issues
http://www.silx.org/doc/pyFAI/dev/project.html#getting-help

. Reasons to choose pyFAl

 Faster than others

— First tool using sparse matrix multiplication to perform integration
- All computation intensive kernels are ported to C, C++ or OpenCL
- PyFAl is the only azimuthal integration tool benefiting from GPU

* More versatile (hackable) than other
- Many integration space already exists ...

* you can add your own easily
- Its geometry is so generic it matches any configurations

« SAXS, WAXS, moving detectors ...
— Most detectors are already defined

« Each detector can be adapted, and saved in a Nexus file

— |t has a nice user interface thanks to Valentin !

 Part of the silx collaboration

— Bus-count slightly larger than one !

e

Page 30 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ES

€ ') [¢ i) wwsilk.o rg

silx

Scientific Library for
eXperimentalists

Resources

e silx on GitHub
e Wheels and source on PyPi
e |nstallation instructions

Documentation

Latest release
Nighthy build
v0.3.0

v0.2.0

v0.1.0

Page 31

silx-kit

pyFAl

Fast Azimuthal Integration in
Python

Resources

e pyFAl on GitHub
e Wheels and source on PyPi

e |nstallation instructions

Documentation

e | atest release
o Nighthy build

ESRF users meeting tutorial 2023

e | Q silekit

FablO

I/O library for images produced by
2D X-ray detector

Resources

e FablO on GitHub
e \Wheels and source on PyPi
e |nstallation instructions

Documentation

e | atest release
o Nighthy build

06/02/2023 The European Synchrotron | E

. silx-kit: Shared development around:

e User interface

- Common interface to Qt and soon jupyter-lab
— Common visualization widgets

* GPU computing

— Common initialization

* Scientific data analysis

- Multi-threaded implementation of core algorithms

Page 32 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

Mo Management of the silx-kit project

Page 33

Public project hosted at github
https://github.com/silx-kit/silx

Continuous testing
Linux, Windows and macOS
Nightly builds
- Debian packages
Weekly-meetings
Quarterly-releases
Code-campsbeforerelease

Continuous documentation

http://www.silx.org/doc/silx/

ESRF users meeting tutorial 2023

Organization managing the silx project

SNEE

| Repositories

Fliters ~

silx

Sclentific Library for eXperimentalists

Updated 5 minutes ago

pyFAl

Pecple 8

silx@esrifr

Teams 1 Settings

People 9>

Python %7 13

Python %17 P34

Fast Azimuthal Integration in Python

Updated 7 days ago

fabio

Invite someone

Python 13 117

IO library for images produced by 2D X-ray detector

Updated 19 days ago

Table Of Contents
d
n

Next topic

This Page

ick search

I =

Enter ch terms or a module,
as nction name.

silx 0.3.0-devO

The silx project aims at providing a collection of Python packages to support the
development of data assessment, reduction and analysis applications at
synchrotron radiation facilities. It aims at prowviding reading/writing different file
formats, data reduction routines and a set of Qt widgets to browse and visualize
data.

The current wversion provides reading SPEC file format, histogramming, fitting,
curves and image plot widget with a set of assaociated taoals.
Overview

Releases, repository, issue tracler, mailing list, ...
Installation steps

How to install silx on Linux, Windows and MacOS X
Description

Description of the different algorithms and their implementation
Tutorials

Tuteorials and sample code
APl Reference

Documentation of the packages included in silx
Change Log

List of changes between releases
License

License and copyright infarmation

06/02/2023

The European Synchrotron

https://github.com/silx-kit/silx
http://www.silx.org/doc/silx/

Outcome of the silx toolkit (2015-2018

Grispy - Coze_Oh_2o K0S

S b fae e] - S5 @ e i E

TDS2EL2 I —

coxoien® Bue “w -))
ey BT i BB - @

Crispy

TomoGUI

data seures | rormalzation | raeanmructan parsmazars zample somzacsian |

Impge 2-15

= comptre e s f rataan for o

sineqrar (ALssessanee, zarpren |
Compars e canmr f ptaran far shrarstan Anera frarsrsen]
& gus tertee maruly

v i B4 SBe (@

oo gaussee oong b

Garsen -

Fit of XRESpoctrum.mea 2.1.1.1 fram Chanmel 0.000 tn 4095.000

[shortTal [tong Tail (] stepTail [contgure | |7 =

[escope [mlewp () stp mack. [Toas |
k1 T mecnmaien iy RATIONS | DIAGHOSTICS.

\/ P —

-

PyFAI Calibration

identify rings from the image.

click on the ring you want to select, Usually it is
the first one, else update it's number in the list
of the picked rings bellow.

You have to identify at least 5 peaks distnbuted [owms |

on 2 rings. Then use the extraction taol ta find
more paaks automatically.

Picked rings PyMca
DN @B e 8

Name Peaks Ring number

a 356 1
Mo 87 |2

[19 358 El

EEE
=
BB B
o i

o< O >« O ¢ T < O o< T < A > Y ¢}

6
[) 79 7
[L] 36 8 =
Recalibrate
Max rings to extract: 10 -
Mumber of peak per degree: 100 o

Extract

¥: 36,6009 Value: 613] S py F‘ \I

Page 35 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESRF

3D view of the diffraction setup

016 -

0.as s

-0.05

ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron

3D view of the diffraction setup

ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron

Calibration tools: Qt5 based

Experiment settings

Peak picking

Geometry fitting

Cake & integration

Online help

Page 38

Experiment settings

Peak picking

Geomatry fitting

Cake & integration

PyFAl Calibration

150 1

100 1

Azimuthal

—100 -

—150

rigin

2500

2000 +

1500 +

Intensity

1000 +

500

20:0.288rad q 19.573 nm~’

20
Radial

ESRF users meeting tutorial 2023

PyFAl Calibration

Integration parameters

Radial unit: Scatteringangle .
Radial points: 1024
Azimuthal points: 360

Polarization factor:
Pixel splitting: Bounding box
V' Display mask overlay

Integrate

Geometry

Save as PONI file...

06/02/2023

Help
Identify rings from the image.

Click on the ring you want to select. Usually it is the
first one, else update it's number in the list of the picked
rings bellow.

You have to identify at least 5 peaks distributed on 2
rings. Then use the extraction tool to find more peaks

automatically.

Picked rings

2Ny 8 2 ([

Name Peaks Ring number

M- 41 1 o8
Mo 57 |2 JC B8
L 34 3 JC B8
=+ Extract more rings =

Auto-extraction options

Amount of ring to extract Siie

Number of peak per degree: 1.00 =

Guess geometry from: Control points X
Next >

The European Synchrotron | ESRF

Calibration tools: Jupyter-lab

Page 39

1000

016

a6

y in pixels

0.08

400
0.06

0.04
200

0.02

0.02

0.02

€ 9 4| 0B

Refine

Figure 2

dim2 { = m)
0.04 0.06 0.08 0.10

20004 0.0e400 0.08 0.800
X In pixels

Ring# | 2

€y

ESRF users meeting tutorial 2023

012 0.14 0.16

0.16
g
0.14 =
@
=8
0.12 O
£
S
010 E %
E

-
- £
008§ &
&
i
o
0.06 ¥
5
5
S
0.04 o
=

0.02

012 D4 016

06/02/2023

- 104

103

10?

10t

10"

The European Synchrotron |

. Acknowledgments

* Former data analysis unit colleagues:

Other synchrotron/labs

- Valentin Valls - Soleil: Fred Picca

- Loic Huder - Clemens Prescher (Dioptas)

- Thomas Vincent -
- Sesame: Philipp Hans

- NSLS-II, ALS, APS, ...

- Claudio Ferrerot

e ESRF Beamlines:
- BMO1, BMO02, ID02, ID11,

International Grants:

ID13, ID15a, ID15b, 1D21, - LinkSCEEM-2 grant
ID22. ID23, BM26, ID27, D28, o _
BM29, 1D29, ID30, ID31 ... * Dimitris Karkoulls

 Giannis Ashiotis

* Trainees: « Zubair Nawaz

— Aurore Deschildre
— Frederic Sulzmann

- Guillaume Bonamis

Page 40 ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | ESR?

Questions ?

ESRF users meeting tutorial 2023 06/02/2023 The European Synchrotron | E RF

	Slide 1
	Slide1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

