s ® O, >
.-.'..o.o...'-. v 4

ESRF | The European Synchrotron

Python Fast Azimuthal Integration tool-set

Page

Data reduction tools for
scattering experiments

Jérome Kieffer
Online data analysis @ ESRF

Tutorial for ESRF users meeting 2020: pyFAl 03/02/2020 The European Synchrotron | ESRF

ot

* Power diffraction and scattering of X-Rays
 What is azimuthal integration of 2D detector data ?
* The need for faster data processing ...
* ... without compromising quality
 PyFAlI:

- Ecosystem and user community

— The silx collaboration

— Latest developments: 3D view of the experimental setup

e Conclusions

Page 3 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

X-ray scattering experiments

Source: Wikipedia
CC-BY-SA: Jeff Dahl

Bragg spots:

Xray d_iffraction from
Monochromatic = T~ single crystal
Crystalline
sample

Ice ring: diffraction
from powder

2D camera
 Lightis reflected as on mirror:

- No energy change (elastic scattering)
- Direction of diffracted beam depend on the crystalline cell and its orientation

- Intensity of the diffracted beam depend on the the content of the cell

image plate

— Nobel price of Bragg (1915) nA = 2dsin#,

detect _
Debye-Scherrer /ffig['”'

cones __————— ~

* Multiple small crystals (powder)

— Isotropic cones giving conics (mainly ellipses)
when intersected with the detector

The European Synchrotron | ES

Page 4 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020

. Powder diffraction and small angle scattering

Application of powder diffraction: Application of small angle scattering
- Phase identification (mapping) — Micro/nano-scale structure
- Crystallinity - Particle shape
— Lattice parameters — Protein domains
— Thermal expansion - Protein folding
— Phase transition - Colloids

- Crystal structure
- Strain and crystallite size

* Both rely on the same transformation: 2D image — azimuthal average

Azimuthal . "

~integration .

22222

Page 5 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

. Many different tools exists ...

 FIT2D

- MIT licensed from ESRF, written in Fortran, now discontinued
« XRDUA

- GPL licensed from U. Antwerp written in IDL, focuses of diffraction mapping

* Dawn

- EPL license from Diamond Light Source, written in Java
« DataSqueeze
- Freeware from U. Pennsylvania
* Foxtrot
- Commercial, from Xenocs & synchrotron Soleil, written Java
 Maud
- Freeware from U. Trento, written in Java
 GSAS-II
- Freeware tool from U.Chicago & APS, written in Python
* Scikit-beam

- BSD licensed from NSLS-II & BNL, written in Python.

Page 6 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ES

. Concepts in PyFAI

* Image

2D array of pixels as numpy array

read using silx, fabio, hbpy, ... --
 Azimuthal integrator: core object m-
 powder diagram using integrate1d u-

- “cake” image, azimuthally regrouped using integrate2d

« Detector N

« Calculates the pixel position (center and corners) M

e (Calculate or store the mask |
—> saved as a HDF5 file Y :
 Geometry
Position of the detector from the sample & incoming beam* —
— saved as PONI-file ‘

0 50 100 150 200 250 300 350

http://www.silx.org/doc/pyFAl/dev/geometry.html#detector-position

Page 7 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

http://www.silx.org/doc/pyFAI/dev/geometry.html#detector-position

. Geometry in pyFAl

» 3 distances in meter: dist, poni,, poni
- 3rotation in radians: rot,, rot., rot,
+ wavelength / energy

2} PONI/file

From the sample's point of view,
Looking at the detector :

rot 7 :move detector to the right
rot, 7 : move detector downwards
rot, T : move detector clockwise

Qot 1

A rotQD'.

){I

-
“

Detector's origin: Origin: ™

lower left, looking from sample
the sample
Tutorial for ESRF users meeting 2020: pyFAIl 03/02/2020 The European Synchrotron | ESRF

Page 8

Calibration in pyFAI

* The determination of the geometry is also known as calibration

- The prerequisite is:
e detector geometry and mask,
« calibrant (LaB,, CeO,, AgBh, ...)
« wavelength or energy used
- Only the position of the detector and the rotation needs to be refined:

« 3 translations: dist, poni, and poni,
« 3 rotations: rot,, rot,, rot,
* ltis divided into 4 major steps:
1) Extraction of groups of peaks
2) ldentification of peaks and groups of peaks belonging to same ring
3) Least-squares refinement of the geometry parameters on peak position
4) Validation by an human being of the geometry

 PyFAl assumes this setup does not change during the experiment

* Tutorial:

http://www.silx.org/doc/pyFAl/dev/usage/cookbook/calib-gui/index.html

Page 9 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

http://www.silx.org/doc/pyFAI/dev/usage/cookbook/calib-gui/index.html

What happens during an integration

1) Get the pixel coordinates from the detector, in meter.
There are 3 coordinates per pixel corner, and usually 4 corners per pixel.
1Mpix image — 48 Mbyte !
2) Offset the detector's origin to the PONI and rotate around the sample
3) Calculate the radial (20) and azimuthal () positions of each corner
4) Assign each pixel to one or multiple bins.

If a look-up table is used, just store the fraction of the pixel.
Then for each bin sum the content of all contributing pixels.

5) Histogram bin position with associated intensities
6) Histogram bin position with associated normalizations (i.e. solid angle)

7) Return bin position and the ratio of sum of intensities / sum of norm.

Page 10 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

_Howitworks .

 Pixel-wise corrections:

Iraw_Idark _ Signal

I.,.= =
“r F-Q-P-A-1, normalization

Where: l, is the incoming flux (pixel independent)

- |, and |, are the signal measured from the detector
- Fis the flat-field correction

- Qs the solid angle for this pixel

- P s the polarization factor

- Ais the parallax correction factor

* Averaging over a bin defined by the radius r:

Z ¢, signal,

i€ bin
I),=w—"
Where ¢; is the fraction of the pixel i contributing to bin, < >r Z c,-normalization,
i€ bin,

* Associated error propagated:

- Assuming there is no correlation
between pixels

\/Z c}-variance,
e _ i€bin,
(< >r) Z Ci.normalizationi
i€bin,

- Can create correlation between bins

Math from Kieffer et al.; J. Synch. Radiation (2020) accepted
Page 11 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

Example of simplified implementation in Python

Common initialization step:

In [1]: import numpy
npt = 1024
y,x = numpy.ogrid[-512:512,-512:512]
radius = (x*x+y*y)**0.5

= radius.max()+0.1

data = numpy.random. random((1024, 1024))

Naive approach integration using corona extraction with masks:

In [2]: %%time
res_loop = numpy.zeros(npt)
for i in range(npt):
rinf = rmax * i / npt
rsup = rinf + rmax / npt
mask = numpy.logical and((rinf <= radius), (radius < rsup))
res loop[i] = data[mask].mean()

CPU times: user 1.04 s, sys: 0 ns, total: 1.04 s
Wall time: 1.04 s

Vectorized version using histograms:

In [3]: %% time
count_of pixels = numpy.histogram(radius, npt, range=[0, rmax])[0]
sum_of_intensities = numpy.histogram(radius, npt, weights=data, range=[0, rmax])[0]
res_vec = sum_of_intensities / count_of pixels

CPU times: user 19.5 ms, sys: 1.44 ms, total: 20.9 ms
Wall time: 19.4 ms
In [4]: # Speed-up: 50x, validation:
numpy .allclose(res_loop, res_vec)

Out[4]: True

Page 12 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ES

=

Speed matters ...

Page 13

1018 - 1026
New EBS source SASE XFEL EuroXFEL
. 24
- 50x brighter [EI4] 4
) 22 8
_ . | 1014 = - _ o Electrons =10~ =
Starts in March 2020 !) nn | E §
2 1012+ Undulator ESRF, SPring8 L1020 5| &
= Titan)
= O m ‘:::::3 "~ Fujitsu K o 5 @
2. 1010 “ hosg | S
N gadrunner
=10 Road 'g, =
| =
'g i 3rd Generation SR g" q%
S| 5108 - Blue Gene [-1('6 e E
ol = o NEC Earth I
nd 2 * ¢
E| Z 106 - RS . \Intel ASCLRed |01 5 | =
@ N\ Cray 90 =
=| 8) | e
=l & . : 2| a
E 1 G tion SR
= o 10¢ eneration Cray 2 -1012 é‘ 5
-y B \Cray X-MP AE
g Cray 1 =1 »
"6 102 CDC 6600 : 1010 E
=
% IBM 7090 3
= - 108
'5- 10° Eniac 10
o~ Cu Ka Rotating Anode v
i 102 T T T T T T 10°
1950 1960 1970 1980 1990 2000 2010 2020
Year Source: UCLA Coherent Imaging

Faster detectors

- Eiger2 detector (2-20 kHz)
- Jungfrau detector (2 kHz)

Tutorial for ESRF users meeting 2020: pyFAl

— Stream limited to

03/02/2020

2 Gigabyte/s/detector !

The European Synchrotron | ESRF

The gap between computing and acquisition grows

* Most other codes use the same algorithm based on histograms ...
... and reach the same speed:

- Fit2D written in Fortran
- SPD written in C

- Foxtrot written in Java
* The algorithm needs to be changed !

- Histograms cannot easily/efficiently be parallelized !

- Re-develop based on parallel algorithms
— CSR dot product is many-core friendly
Described in https://arxiv.org/abs/1412.6367v1

Page 14 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

https://arxiv.org/abs/1412.6367v1

. Look-up table integration using only Python

Using a Sparse matrix multiplication

Those multiplication can take advantage of parallel hardware unlike histogram which require costly afamic operations. This trick is called "scatter to gather"
transformation in parallel programming.

In [5]: %% time
from scipy.sparse import csc_matrix
positions = numpy.histogram(radius, npt, range=[0,rmax])[1]
row = numpy.digitize(radius.ravel(), positions) - 1
size = row.size

col = numpy.arange(size)
dat = numpy.ones(size, dtype=float)
csr = csc_matrix((dat, (row, col)), shape = (npt, data.size))

print(csr.shape)

(1024, 1048576)
CPU times: user 60.5 ms, sys: 6.21 ms, total: 66.7 ms

wall time: 69.7 ms

In [6]: %%time
count_csr = csr.dot(numpy.ones(data.size))
sum_csr = csr.dot(data.ravel())
res c¢sr = sum_csr / count csr

CPU times: user 3.11 ms, sys: 3.1 ms, total: 6.21 ms
Wall time: 4.69 ms

In [7]: # Speed-up: 5x vs histograms, validation:
numpy.allclose(res csr, res vec)

Oout[7]1: True

Sources of this demo available on:
https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e
Page 15 Tutorial for ESRF users meeting 2020: pyFAl 03/02/2020 The European Synchrotron | ES

=

https://gist.github.com/kif/ab37c61351d8238f90245b0afb56192e

Advantages of histograms vs sparse matrix multiplication

Histograms Sparse matrix multiplication
Pro °* Easierto understand Faster, even on a single core
* Low memory consumption Many-core friendly
* Fast initialization - OpenMP and OpenCL
Con °* Pretty slow * Slower initialization
* Hardly parallelizable * The sparse matrix can be large
Rule of thumb: < 5 frames = 5 frames

Page 16 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF

. Benchmark: Let's speak about speed !

IBM Power9 32 cores / Nvidia Tesla V100

1000 A

500 A

200 A

100 A

50 A

20 A

10 A

Frame per second (log scale)

SN

~

—e— 1D CPU serial

e~ 1D CPU_CSR_OpenMP

—®- 1D ALL CSR Portable Tesla V100-SXM2-32GB
\.~~~

~~~
-~
-~

GPU cluster foreseen for ESRF’s restart and online data analysis, up to 4x V100 per computer :
Tutorial for ESRF users meeting 2020: pyFAl

Page 17

T T T T T T

6 8 10 12 14 16
Image size in mega-pixels

03/02/2020

The European Synchrotron | ESRF



|voréoot

High frequency noise issue

Page 18 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



Azimuthal

. Example with SAXS data integrated in 2D

Pilatus 200Kk:
~500 x 400 pixels

2D averaWr 512x360 bins

| e "
Without pixel splitting O ~ With pixel splitting

150 2

100

Azimuthal

-50

—100

-150

0.5 10 15 2.0
Radial

A\ creates bin cross-correlation A\

Page 19 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



. Pixel splitting schemes available in pyFAl

No pixel splitting: default histograms N

— Each pixel contributes to a single bin of the result \

— No bin correlation but more noisy \

— The pixel has no surface: sharpest peaks

Bounding-box pixel splitting \

- The smoothest integrated curve \

— Blurs a bit the signal

Pseudo pixel splitting N

- Scale down the bounding box to the pixel area,
before splitting. \

— (Good cost/precision compromise, similar to FIT2D

Full pixel splitting N

- Split each pixel as a polygon on the output bins. N\

— Costly high-precision choice \

Page 20 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



. Impact of pixel splitting on integration speed

* Histogram based algorithms:

— Each pixel is split over the bins it covers.
— The corner coordinates have to be calculated (4x slower initialization)

— The slow down is function of the oversampling factor, for every image

* Sparse matrix multiplication based algorithms

— The sparse matrix contains already the pixel splitting scheme
— Longer initialization time related to the oversampling factor

- There are NO performance penalty on the integration itself

All those consideration are independent of the programming language

Nevertheless, Python which is interpreted is expected to be 1000x slower than:
e compiled code like C, C++, Fortran, ...
* JIT compiled code like Java, Julia or numba

Page 21 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



. Layers in pyFAI

Applications level:

- GUI applications: pyFAl-calib2, pyFAl-integrate, diff_map

- Scriptable applications:pyFAl-average, pyFAl-saxs, pyFAI—waxs diff tomo
Python interface: |deally used from Jupyter
- Top level: azimuthal integrator

- Mid level: calibrant, detector, geometry, calibration

- Low level: rebinning/histogramming engines (Cython with OpenMP or Open

* Question: how to define the right balance ? l
- G s
It is up to you ! w ;W
- )

In this tutorial, only applications in bold will be demonstrated

Page 22 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



. Project management

Silx & pyFAl

Page 23 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



. PyFAl is yet another azimuthal integration tool

* Written in Python (compatible with 2-7,-3-4; 3.5, 3.6, 3.7 & 3.8)

- Free, fast and portable

- MIT licensed: compatible with both science & business

- Part of the silx collaboration on data analysis initiated by ESRF
- Graphical user interface using Qt5

« Open to collaboration

- About 20 direct contributors,

* Mainly from ESRF
* Also from other synchrotrons and XFELs:

- Soleil, NSLS-II, Petra-lll, Eu-XFEL
* Industrial contributions from Xenocs

- Used by > 40 other projects from all the largest X-ray sources in the world
« EUXFEL, SLAC, ALS, APS, NSLS-II, Petra-lll, Soleil, Diamond, SLS, Max-lV, ...
 Avoid compromises: no difficulty is hidden

« science does not suffer approximations

Page 24 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



. User community of pyFAI

 PyFAl is used in most European and American synchrotons/FELs

PyFAI mailing list subscriber

grouped by mail domain

€.

« User support is provided via the mailing list: pyFAI@esrf.fr

B ESRF

B France academic
Germany academic

W Europe, other ac.

B Gmail or Hotmail
USA academic

B Private companies
Other academic

— Archived on http://www.silx.org/lurker/list/pyfai.en.html
- 137 people subscribed to the list (Jan 2020; 112 in 2018, 132 in 2019)

- limited activity (~1 thread/month)
http://lwww.silx.org/doc/pyFAl/dev/project.html#getting-help

Page 25 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF


http://www.silx.org/doc/pyFAI/dev/project.html#getting-help

. Reasons to chose pyFAl

 Faster than others

— First tool using sparse matrix multiplication to perform integration

- All computation intensive kernel are ported to C, C++ or OpenCL

- PyFAl is the only azimuthal integration tool benefiting from GPU
* More versatile (hackable) than other

- Many integration space already exists ...

* you can add your own easily
- It's geometry is so generic it matches all configuration

« SAXS, WAXS ...
— Most detectors are already defined

« Each detector can be adapted, and saved in a Nexus file

— |t has a nice user interface thanks to Valentin !

 Part of the silx collaboration

— Bus-count slightly larger than one !

Page 26 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



€ 9|0 wwusilkorg

silx

Scientific Library for
eXperimentalists

Resources

e silx on GitHub
e Wheels and source on PyPi
e |nstallation instructions

Documentation

Latest release
Nighthy build
v0.3.0

v0.2.0

v0.1.0

_________________________________________________________________________________________________________________________________________________________________________________________________|
03/02/2020 The European Synchrotron |

Tutorial for ESRF users meeting 2020: pyFAIl

Page 27

silx-kit

pyFAl

Fast Azimuthal Integration in
Python

. ~
. .
>

L}

/4
e

Resources

« pyFAl on GitHub

e Wheels and source on PyPi
« |nstallation instructions

Documentation

e | atest release
o Nighthy build

| Q sil-kit

FablO

I/O library for images produced by
2D X-ray detector

Resources

e FablO on GitHub
e Wheels and source on PyPi
e |nstallation instructions

Documentation

e | atest release
o Nighthy build




. silx-kit: Shared development around:

e User interface

— Common interface to Qt
- Common visualization widgets

* GPU computing

—  Common initialization

* Scientific data analysis

- Multi-threaded implementation of core algorithms

Page 28 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | ESRF



Management of the silx-kit project

silx@esriir

Public pl'OjeCt hosted at glthUb \ Organization managing the silx project
-

https://github.com/silx-kit/silx

EHepusltorles People 9 Teams 1 Settings

« Continuous testing e

E |
. . silx Python %7 113 B 1 LA
Linux, Windows and macOS = 15

* Nightly builds e

Fast Azimuthal Integration in Python

Python %17 34

- Invite someone
Updated 7 days ago

- Debian packages

- fabio Python w13 117
[ J Wee kly m eetl n gs IO library for images produced by 2D X-ray detector
Updated 19 days ago

.0a0 documentation » next | modules | index
silx 0.3.0-devO

The silx project aims at providing a collection of Python packages to support the
development of data assessment, reduction and analysis applications at
synchrotron radiation facilities. It aims at prowviding reading/writing different file
formats, data reduction routines and a set of Qt widgets to browse and visualize
data.

* Quarterly releases

e Code camps before release

Table Of Contents The current wversion provides reading SPEC file format, histogramming, fitting,

L4 C o nti n u o u S d oc u m e ntat i o n curves and image plot widget with a set of assaociated taoals.

Ini
Overview
Releases, repository, issue tracler, mailing list, ...

http://www.silx.org/doc/silx/ g

Next topic

How to install silx on Linux, Windows and MacOS X
. Description

ick search Description of the different algorithms and their implementation
L Jcoll s
Ent: ch terms or a module, Tutorials and sample code

nction name. ,ﬂ..D." .D.Sfereﬂ(e

Documentation of the packages included in silx
Change Log

List of changes between releases
License

License and copyright infarmation

Page 29 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | E!


https://github.com/silx-kit/silx
http://www.silx.org/doc/silx/

% Silx-kit project and the silx library

Mainly Pierre Knobel ...  Mainly Jérodme Kieffer Mainly Thomas Vincent
Online data analysis
e.g. PyFAl ATLITTTTN

Jeu efha Diacrats Pk Trrmtoms

Standa Apps e.g.
PYMCA, PyDIF
... and Valentin Valls

Workflows Extensions

Mainly Henri Payno

Page 30 Tutorial for ESRF users meeting 2020: pyFAIl 03/02/2020 The European Synchrotron | ESRF



Outcome of the silx toolkit after 3 years:

Page 31

Grapy ~Cet O 20 05
S b X [ e i - 2 8 CSU T W

TDS2EL2 N -

x =i o n®

=R

— i

Gne -

-m‘g‘mmm DB e

data zourcs | rormalzation | racanmuctian parsmazar: | ramgle somsacsitan

Image 2-15

ter o panain far sbasrstan Snearan itrarsrsen]
& gus certee arualy

i e bl s e e sivosn defivit

certer of ratation il 30 [120

Flo tpeloa: Mems

Crispy

1= zomptre e s of patarian far erviss a0 sineqrar (fLoceasance, sampren |

TomoGUI

b g e s s e
R

T omm

I

Fit of XRESpectrum.mea 2.1.1.1 from Chanmel 0.000 to 4

£ ] Escape.
T i RATIONS | DIAGHOSTICS

[l shortTai | tong Tail [ stepTai
[ Fleup (¥ stp sack.

os5000
Pz

[ 7o |

\/ =

1o e stack vew

PyFAI Calibration

identify rings from the image.
of the picked rings bellow.

more paaks automatically.

Picked rings

N

B e

click on the ring you wart to select, Usually it is
the first one, else update it's number in the list

You have to identify at least 5 peaks distibuted
on 2 ings. Then use the extraction tool ta find

Name Peaks _Ring _numb_a__r
a 3/6 |1 3
[ I 387 |2 7
o 358 |3 g
[ Il 265 |4 >
H- 230 |5 3
| K 25 |6 R
| I |7 2
[ L 36 8 2
Recalibrate
Max rings to extract: 10 -
Mumber of peak per degres: 100 o
B T T e Extract
;3666009 e py FAI

Value: 619

Tutorial for ESRF users meeting 2020: pyFAIl

03/02/2020

At XxXueNMIBh BOe (@ sl )34
6o
o, _—
220,
ascteguins B > a0} - .
- i | . -
w e - 10,

L

The European Synchrotron | ESRF



3D view of the diffraction setup

016 - -
LY
\
LY
3
L
¥
{5
% 0.05 -
\
\ '
Lo
ha by o
L
A
006 4,00}
-0.05

Tutorial for ESRF users meeting 2020: pyFAl 03/02/2020 The European Synchrotron




3D view of the diffraction setup

Tutorial for ESRF users meeting 2020: pyFAl 03/02/2020 The European Synchrotron |




. Calibration tools

Experiment settings

Peak picking

Geometry fitting

Cake & integration

Online help...

Page 34

TH Experiment settings

@) Mask

@ Peak picking

A\ Geometry fitting

[E) cake & integration

PyFAl Calibration

150 1

100 1

Azimuthal
o
!

—100 -

-150

rigin

2500

2000 +

1500 +

Intensity

1000 +

500

20:0.288rad q 19.573 nm~’

Radial

PyFAI Calibration

Integration parameters

Radial unit: Scatteringangle . =
Radial points: 1024
Azimuthal points: 360

Polarization factor:
Pixel splitting: Bounding box
V! Display mask overlay

Integrate

Geometry

Save as PONI file...

Tutorial for ESRF users meeting 2020: pyFAl

Help
Identify rings from the image.

Click on the ring you want to select. Usually it is the
first one, else update it's number in the list of the picked
rings bellow.

You have to identify at least 5 peaks distributed on 2
rings. Then use the extraction tool to find more peaks

automatically.

Picked rings

VNN b 2 |+

Name Peaks Ring number

LB 41 1 o8
Mo 57 |2 JC B8
L 34 3 JC B8
=+ Extract more rings =

Auto-extraction options

Amount of ring te extract 5 g

Number of peak per degree: 1.00 |2

Guess geometry from: Control points x
Next >

The European Synchrotron | ESRF



. Acknowledgments

 Data analysis unit staff:

Valentin Valls
Thomas Vincent
V. Armando Solé

Claudio Ferrerot

e ESRF Beamlines:

BMO1, BM02, ID02, ID11,
ID13, ID15, ID21, 1D22, ID23,
BM26, BM29, D29, ID30, ID31

* Trainees:

Page 35

Aurore Deschildre
Frederic Sulzmann

Guillaume Bonamis

Tutorial for ESRF users meeting 2020: pyFAl

e Other synchrotron/labs

- Soleil: Fred Picca, Diffabs & Cristal
beamlines

- APS: Clemens Prescher
— NSLS-II: scikit-beam project
- ALS: Camera project

 |International Grants:

- LinkSCEEM-2 grant

 Dimitris Karkoulis
 Giannis Ashiotis

e Zubair Nawaz

03/02/2020 The European Synchrotron | ESRF



Questions ?

Tutorial for ESRF users meeting 2020: pyFAl 03/02/2020 The European Synchrotron




. Installation procedure on MacOS

Download all data needed

- From http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

— Unzip the content of this archive
Install Python3.7

— Double click on the dmg file found in the macos folder

- Drag-and-drop to the Applications folder

Install pyFAl into a virtual environment
- python3.7 -m venv pyfai
— source pyfai/bin/activate

- pip install -f macos/wheelhouse --pre --no-index pyFAI[gui]

Run the application of your choice:
- pyFAI-calib2
— pyFAI-integrate

— pyFAI-benchmark #%

Page 37 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | _SRF


http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

. Installation procedure on Windows

Download all data needed

— From http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

- Unzip the content of this archive
Install Python3.7

— Double click on the exe file found in the windows folder
— Install winpython to the root of the archive

— Launch the “WinPython Command Prompt.exe"

Install pyFAI and the missing dependencies

— pip install -f windows\wheelhouse --pre --no-index pyFAI[guil]

Run the application of your choice:
- pyFAI-calib2
- pyFAI-integrate

— pyFAI-benchmark

Page 38 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | SRF


http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

. Installation procedure on Linux

Download all data needed

— From http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

- Unzip the content of this archive

Install Python 3.x (x25) and create a virtual environment
- Follow the procedure of your distribution

- python3 -m venv pyfai

— source pyfai/bin/activate

Install pyFAI and the missing dependencies

— pip install --pre pyFAI[guil

Run the application of your choice:
- pyFAI-calib2
— pyFAI-integrate

- pyFAI-benchmark

Page 39 Tutorial for ESRF users meeting 2020: pyFAI 03/02/2020 The European Synchrotron | SRF


http://www.silx.org/pub/pyFAI/pyFAI_UM_2020.zip

	Slide1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

