

7th Silx Code Camp June 18, 2018

Introduction

- Novelties (version 0.8.0)
- Status of silx (version 0.7.0)
- Goals of the code camp
 - For users
 - For core developers
- Hands on!

Deal with:

- curves
- Images
- Scatters
- Histograms

Can calculate on:

- All items or active items
- Full data range or visible one (no interpolation !!!)

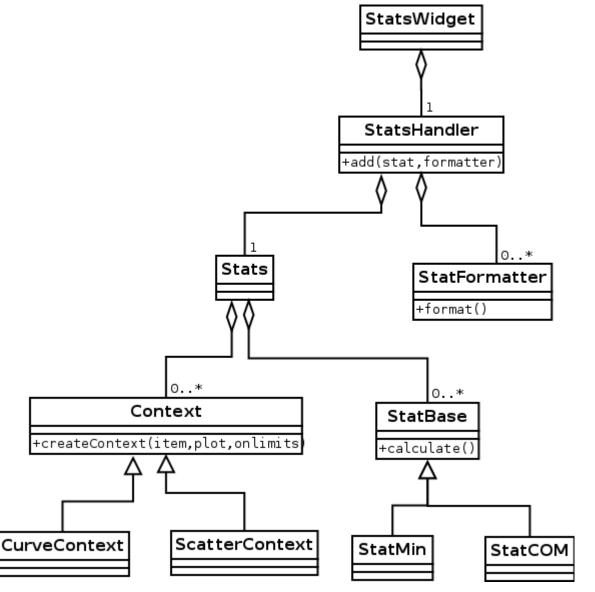
Example: examples/plotStats.py

Stats Widget. Creating Stats from function

```
stats = [
    ('sum', numpy.sum),
]
plot.getStatsWidget().setStats(stats)
```

Statistics will use the `Context` class to reach data.

When using a function pointer it will use the `values` variable of the context. So the function should be compatible with the type

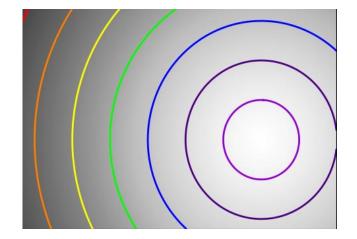

	Accessible 'filtered' data	Values variable	Type of 'values'
CurveContext	xData, yData	yData	1D array
HistogramContext	xData, yData	yData	1D array
ImageContext	imageData	imageData	2D or 3D array
ScatterContext	Xdata, yData, values	values	1D array

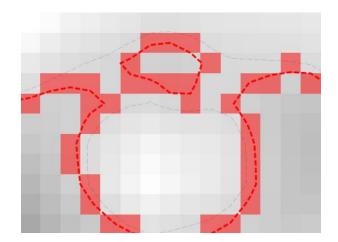
+ access to some generic cache (min, max values). Cache might increased if necessary or have a more advanced API.

StatsWidget. Advanced Usage

ESRF

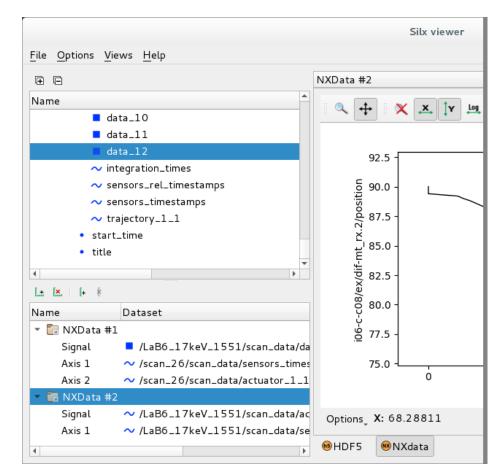
Stats Widget. Creating stats from inheritance


```
class COM(StatBase):
    .....
   Compute data center of mass
    .....
   def init (self):
       StatBase. init (self, name='COM')
   def calculate(self, context):
       if context.kind in ('curve', 'histogram'):
           xData, yData = context.data
            com = numpy.sum(xData * yData).astype(numpy.float32) /
                     numpy.sum(yData).astype(numpy.float32)
            return com
       elif context.kind == 'scatter':
           xData = context.data[0]
            values = context.values
            com = numpy.sum(xData * values).astype(numpy.float32 /
                     numpy.sum(values).astype(numpy.float32)
            return com
```


```
stats = [
    (COM(), StatFormatter(formatter='{0:.2f}')), # or (COM(), StatFormatter(formatter='{0:.2f}'))
]
plot.getStatsWidget().setStats(stats)
```

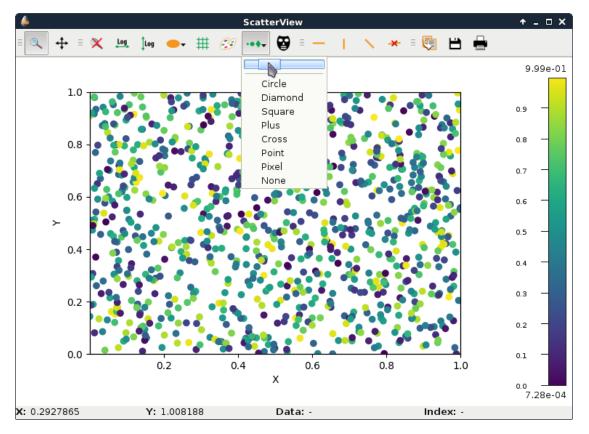

Marching Squares Algorithm

- Designed to speed up PyFAI calibration GUI
 - Cython + OpenMP
 - Support masking
 - Optimization to reach many contours from the same gradient image
 - Reach contours or pixels
- Example: examples/findContours.py

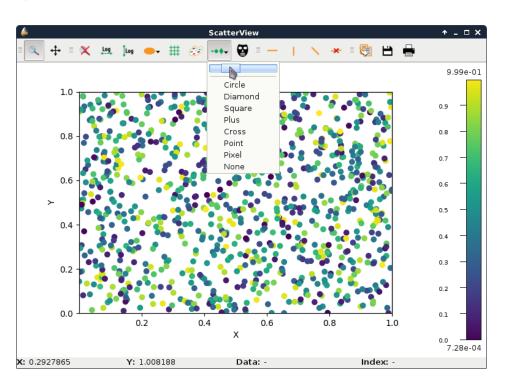


• Save user preferences

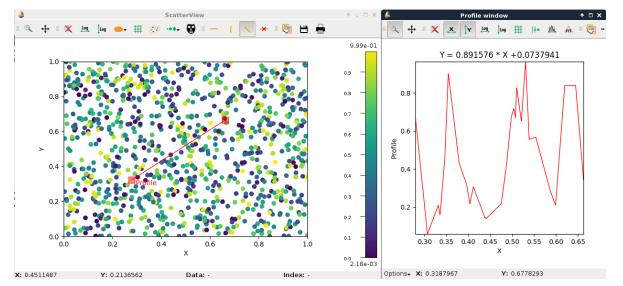
- Colormap
- Y-axis orientation for images
- OpenGL/matplotlib
- Dialog location
- View to compose custom NXdata
 - Drag and drop datasets and axes



from silx.gui.plot.ScatterView import ScatterView


Doc: http://www.silx.org/doc/silx/dev/modules/gui/plot/scatterview.html

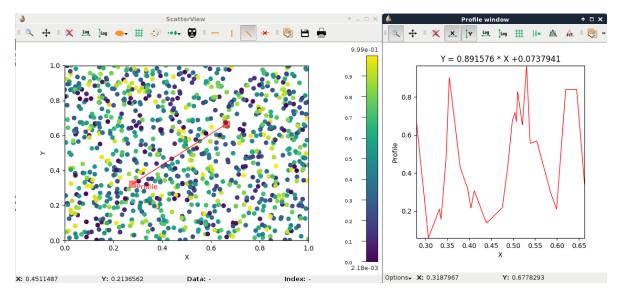
- Standard plot control, colorbar
- Points size/shape control
- Mask
- Profile



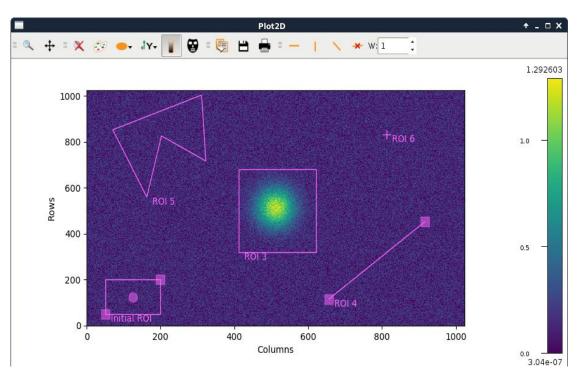
Scatter Plot: Profile Tool

• Scatter plot profile tool as a toolbar:

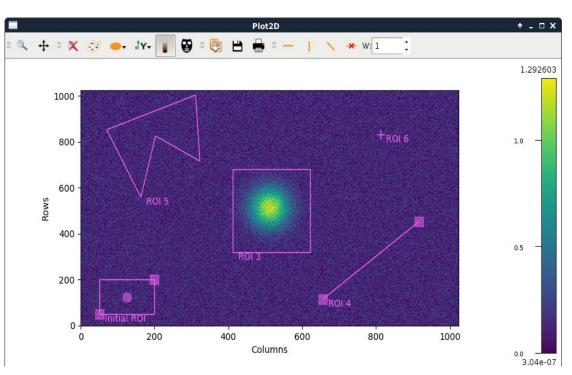
- Horizontal, vertical, line profile
- Based on Delaunay triangulation + interpolation:
 - Using scipy LinearNDInterpolator if available
 - Fallback to matplotlib interpolator


Doc: http://www.silx.org/doc/silx/dev/modules/gui/plot/tools.html#scatterprofiletoolbar

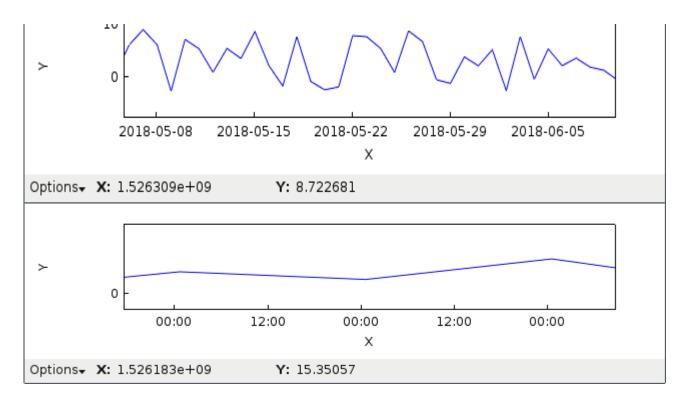
- Future improvements:
 - Support log scaled plot axes
 - Add more profile evaluation methods:
 - Nearest
 - Inverse distance weighting


ESRF

- silx.gui.plot.tools.roi:
 - Regions of interest on a plot with different shapes
 - Editable interactively


Doc: http://www.silx.org/doc/silx/dev/modules/gui/plot/tools.html#module-silx.gui.plot.tools.roi

Sample code: plotInteractiveImageROI.py


- Future improvements:
 - Add more ROI shapes
 - Snap to ROI curve/image
 - Integrate further with plot
- API might change

silx.gui.plot Time series

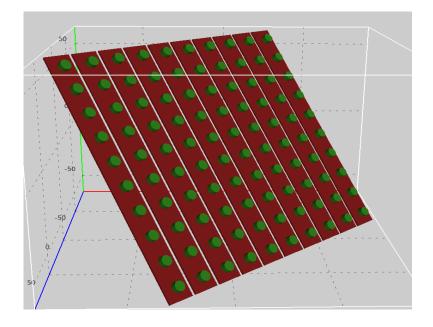
- X axis labels displayed as dates or times depending on scale
- Thanks to Pepijn Kenter (SRON: Netherlands Institute for Space Research)

Doc: http://www.silx.org/doc/silx/dev/modules/gui/plot/items.html#silx.gui.plot.items.Axis.setTickMode

• Idea: Make plot widgets more modular:

- Allow to reuse QAction and QToolBar:

```
from silx.gui import qt
from silx.gui.plot import PlotWidget, tools
[...]
window = qt.QMainWindow()  # Create a window
plot = PlotWidget(window)  # Create a plot
window.setCentralWidget(plot)  # Place plot in window
```


Add plot zoom/pan toolbar to the window window.addToolBar(tools.InteractiveModeToolBar(parent=window, plot=plot))

```
# Add copy/save/print toolbar to the window
window.addToolBar(tools.OutputToolBar(parent=window, plot=plot))
[...]
window.show()
```


- Simple shapes: Cubes, cylinders, hexagons
- Allows to render many similar shapes at once
- Thanks to Guillaume Communie (ISDD/Detector & Electronics)

• Function to update widgets (asynchronously) from a thread:

from silx.gui.utils.concurrent import
submitToQtMainThread

- Returns a Python Future object which allows to know when function is performed and get the result.
- Thanks to Hans Fangohr (European XFEL) for plotUpdateImageFromThread.py sample code

Doc: http://www.silx.org/doc/silx/dev/modules/gui/utils.html

Sample code: plotUpdateCurveFromThread.py, plotUpdateImageFromThread.py

- Colormap code in C/OpenMP:
 - Faster computation
 - sqrt and arcsinh normalization (not yet integrated in the plot)
- PlotWidget OpenGL backend:
 - Improve support of float64 data while using float32 on the GPU.

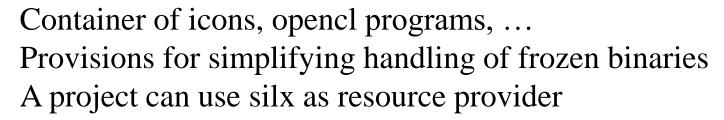
Dropped Support

- Debian 7 (as Debian does...)
- "Old" versions of IPython console widget that do not play well with PyQt5

Introduction

- Novelties (version 0.8.0)
- Status of silx (version 0.7.0)
- Goals of the code camp
 - For usersFor core developers

• Hands on!



Structure of silx

- gui: Graphical User Interface widgets
 - Plot, image display, masks, HDF5 tree view, fitting
- image: Image processing tools
 - Image interpolation, registration and drawing primitives
- io: Input / Ouput
 - Support for SPEC, HDF5 and image formats
- math:
 - least squares fit with constraints, isosurface calculations, histograms, ...
- opencl: Optimize the use of GPU (FBP, registration, median filter, ...)
- third-party: External utilities
- utils: Internal utilities
- sx: Convenience module for interactive use


```
import silx.resources
PYFAI RESOURCE DIR = None # It has to be set for Debian package
silx.resources.register resource directory(
    "pyfai",
   pyFAI.resources,
    forced path=PYFAI RESOURCE DIR)
filename = silx.resources.resource filename("pyfai:calibrant/LaB6.C")
import silx.opencl.utils
filename = silx.opencl.utils.get cl file("pyfai:opencl/integrate")
import silx.qui.icons
icon = silx.gui.icons.getIcons("pyfai:icons/pyfai")
```


Plot: Object API

When getting a curve or an image from a Plot widget in silx, it used to return a list describing this item.

- Since v0.5.0 it returns an object:
 - Add support for updating items in the Plot: curve, image, markers...
 - Mostly backward-compatible with previous API
- Documentation:

http://www.silx.org/doc/silx/dev/modules/gui/plot/items.html

- Example: Getting image information: *from silx import sx w = sx.imshow(img)*
- Object API:

image = w.getActiveImage()
data = image.getData(copy=True)
scale = image.getScale()

• Legacy API:

image = w.getActiveImage()
data = image[0]
scale = image[4]['scale']

Plot: Object and Functional APIs

Example: Updating an image: from silx import sx w = sx.imshow(img)

• Object API:

image = w.getActiveImage()
image.setScale(2., 2.)

• Legacy API:

data, legend, info, pixmap, params = w.getActiveImage() w.addImage(data,

legend=legend, info=info, pixmap=pixmap, scale=(2., 2.))

Colormaps are now defined as a *Colormap* object instead of a dictionary.

This allow modifications on colormaps objects to be managed by other classes such as *PlotWidget* or *ColorBar* (using Qt.Signal).

from silx.gui.plot.Colormap import Colormap

colormap = Colormap(name='temperature', normalization=Colormap.LOGARITHM, vmin=None, vmax=None)

API with colormaps as a dictionary is kept but deprecated.

 Add signals on *PlotWidget* items (i.e. curves, images, markers,...) notifying updates: *sigltemChanged*

Internals: Merged classes Plot and PlotWidget

PlotWidget axis

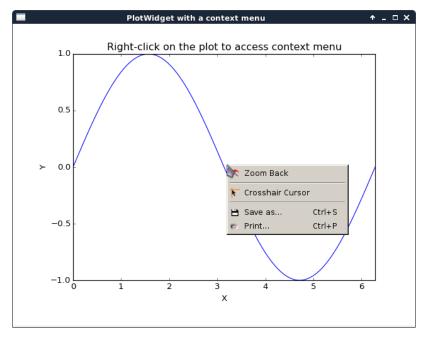
Provide a plot axis API

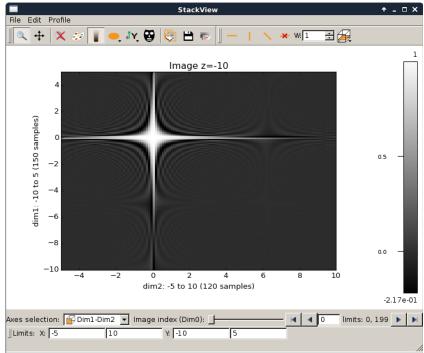
axes =plot.getXAxis(), plot.getYAxis()

- Provides getters, setters
- Signals on limits, scale, label, direction
- Constraints on axes

xaxis.setLimitsConstraints(minPos, maxPos)
xaxis.setRangeConstraints(minRange, maxRange)

- A demo is available at examples/plotLimits.py
- Helper to synchronize axes

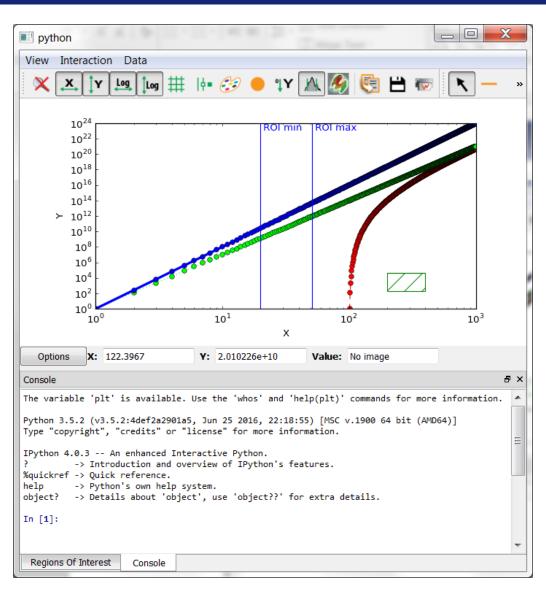

from silx.gui.plot.utils.axis import SyncAxes sync = SyncAxes([plot1.getXAxis(), plot2.getXAxis(), plot3.getXAxis()]) - A demo is available at examples/syncaxis.py



 PlotWidget: Add support for context menu: plotContextMenu.py

PlotWindow, Plot2D
 - Add colorbar

silx.gui: Plot 1D


- Visualize 1D data
- Apply ROIs on them
- Control the plot via an interactive console
- Fitting capabilities
- Object oriented API

silx.gui: base widgets for scientific applications

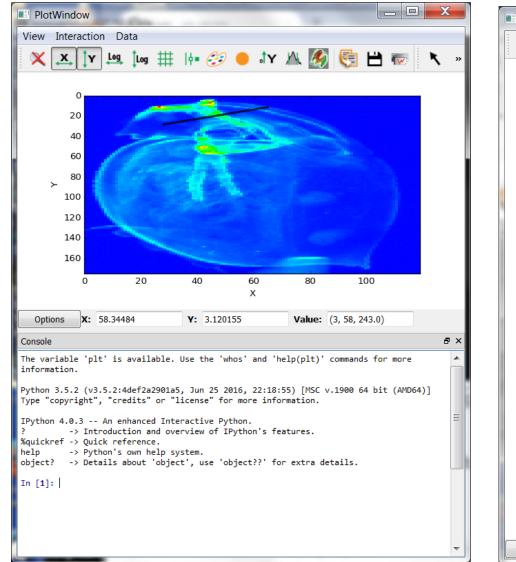
- Browsing file contents
 - Single widget for HDF5, SPEC, Images
- Plotting curves
 - with ROI, fitting
- Display of images
 - with masks, profiles
- Interactive console

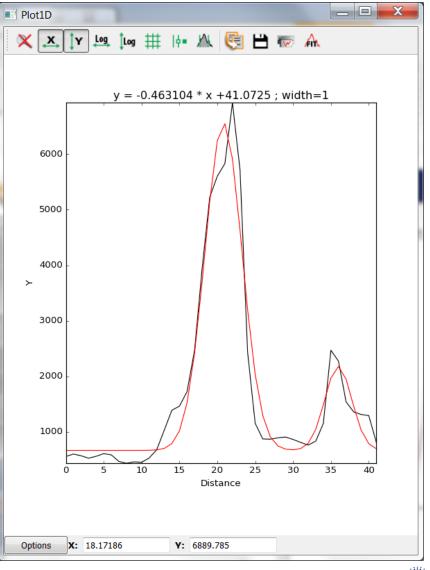
Plot SaveAction : add save as NXdata

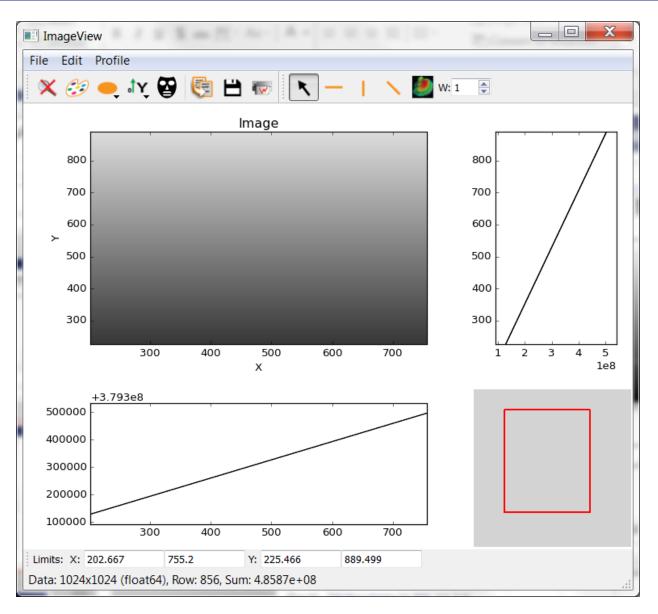
• Save active curve, active scatter or active image to NXdata

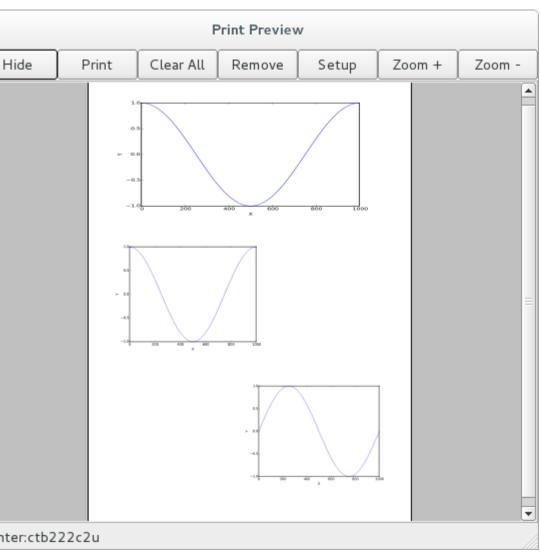
Output File Selection				
Look in:	🛅 /users/knobel/data/plotsave	♦ ∞ ∞	🗇 📔 🎛 🔳	
📃 Compu	Name	Size Type	Date Modifie(^	
📄 knobel	nxdata.h5	10 KB h5 File	2/8/18 8:26 AM	
	nxdata2d.nexus.hdf5	801 KB hdf5 File	2/8/18 8:26 AM	
	📄 irreg_img_as_NXdata.h5	200 KB h5 File	2/8/18 8:25 AM	
	📄 rgba_image_as_NXdatahdf.nxs	11 KB nxs File	2/8/18 8:25 AM	
	📄 scatter_as_NXdata.hdf5	43 KB hdf5 File	2/8/18 8:25 AM	
	py3_scatter_as_NXdata.hdf5	16 KB hdf5 File	2/8/18 8:25 AM	
	📄 rgba_image_as_NXdata.h5	11 KB h5 File	2/8/18 8:25 AM	
	📄 rgba_image_as_NXdata.nxs	11 KB nxs File	2/8/18 8:25 AM	
File <u>n</u> ame:			Save	
Files of type: Image as NXdata (*.nx5 *.nxs *.hdf *.hdf5 *.cxi *.h5) Image as NXdata (*.nx5 *.nxs *.hdf *.hdf5 *.cxi *.h5)				

- Can save some parts of plot state (title, axis labels, active data...) but not all (no curve style, colormap info, additional data items...)
- Future improvements: add a dialog to specify output group in an existing HDF5 file


silx.gui: Plot 2D


- Visualize 2D data (Images and Stacks of Images)
 - Support Median Filters, Profiles and Masks on them
- Visualize 3D data as scatter plots
 - Support Masks on them
- Apply different colormaps
- Plot an image with associated histograms
- Visualize 3D scalar fields (Isosurfaces)


Full-featured widgets



Full-featured Widgets

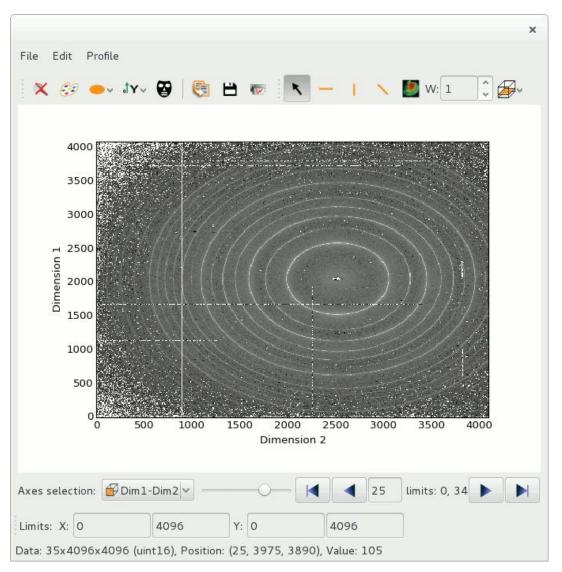
- Print preview dialog (with addImage, addPixmap and addSvgltem methods)
- Tool button for a plot widg (to send the plot as an SVG item)
- Items can be dragged and resized. (Geometry can be configured prior to send the plot).

• Display arrays and datasets of any number of dimensions in a TableView

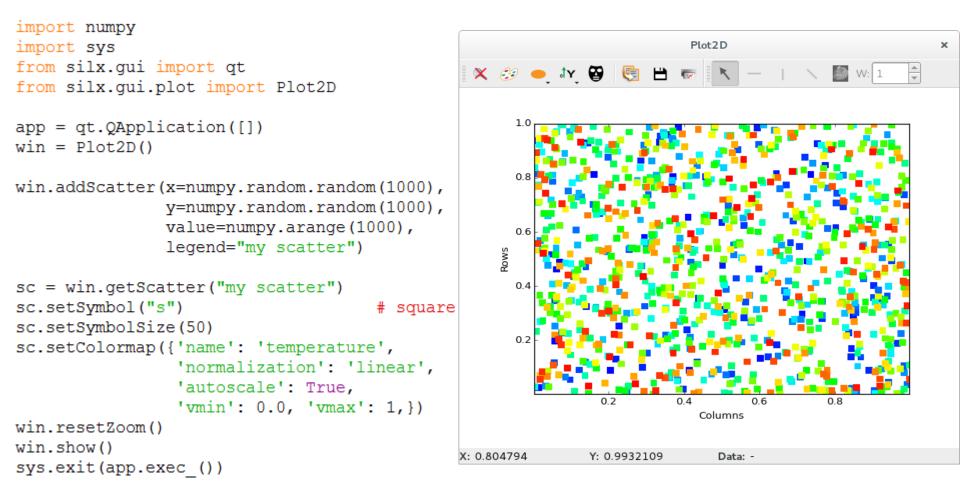
• Lazy loading for datasets: only the currently displayed 2D slice is read from HDF5 file

								3	
Imits: 0, 7 🕨 🕨									
Rows dimension 0 Columns dimension 2 Columns dimension									
	0	1	2	3	4	5	б	7	
С	1.04858e+	1.08134e+	1.11411e+	1.14688e+	1.17965e+	1.21242e+	1.24518e+	1.27795e+	
1	3.14573e+	3.1785e+06	3.21126e+	3.24403e+	3.2768e+06	3.30957e+	3.34234e+	3.3751e+06	
2	5.24288e+	5.27565e+	5.30842e+	5.34118e+	5.37395e+	5.40672e+	5.43949e+	5.47226e+	
3	7.34003e+	7.3728e+06	7.40557e+	7.43834e+	7.4711e+06	7.50387e+	7.53664e+	7.56941e+	
4	9.43718e+	9.46995e+	9.50272e+	9.53549e+	9.56826e+	9.60102e+	9.63379e+	9.66656e+	
5	1.15343e+	1.15671e+	1.15999e+	1.16326e+	1.16654e+	1.16982e+	1.17309e+	1.17637e+	
5	1.36315e+	1.36643e+	1.3697e+07	1.37298e+	1.37626e+	1.37953e+	1.38281e+	1.38609e+	
7	1.57286e+	1.57614e+	1.57942e+	1.58269e+	1.58597e+	1.58925e+	1.59252e+	1.5958e+07	

• Periodic table, list (QTreeView) and combo/dropdown list providing minimal data for elements: symbol, name, atomic number, mass


• Selectable elements, signals for element clicked and selection changed events

periodicTable.py ×																	
PeriodicTable PeriodicList PeriodicCombo																	
н	H Ni(28) – nickel He											He					
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- I	Xe
Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	тι	Рb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	



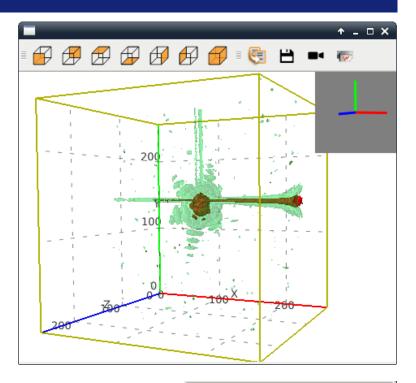
- Viewing 3D arrays, 3D datasets or list of 2D arrays as a stack of images.
- Axes selection
- Profile tool to extract a 2D slice from the 3D stack
- Lazy loading for datasets (except when doing diagonal 3D profile)

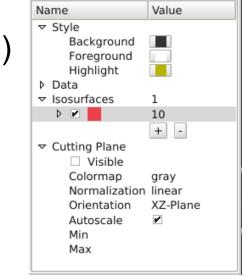
- Support for Qt >= 5.4 OpenGL Widgets (*QOpenGLWidget*)
- Better support of OpenGL context issues (i.e. missing QtOpenGL, ssh GLX forwarding disabled,...) : display an error message rather than raising exceptions.
- First steps of Continuous Integration for OpenGL-based widgets

Matplotlib and OpenGL rendering backends in silx.gui.plot widgets:

• Usage: Set argument backend='gl' in widget constructor for: PlotWidget, PlotWindow, Plot1D, Plot2D, StackView, ImageView

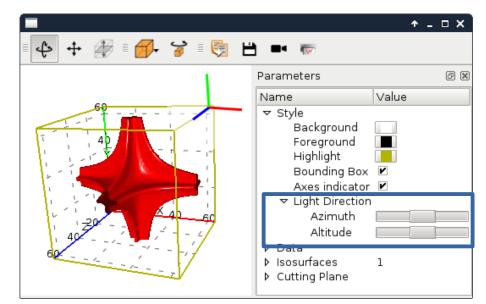
• Example:

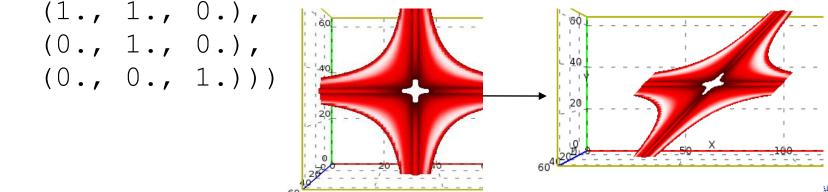

from silx import sx
plot = sx.Plot2D(backend='gl')
plot.show()



Silx 3D Visualization

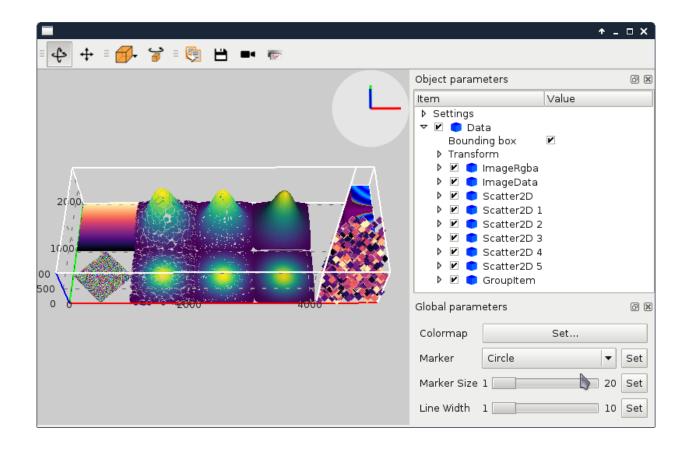
- Dependencies
 - PyQt.QtOpenGL
 - PyOpenGL 3.x
 - OpenGL 2.1 subset
- Qt widgets for 3D plotting
 - ScalarFieldView (scalar field visualization)
 - Iso-surfaces
 - Cutting plane
- Based on an internal 3D scene structure



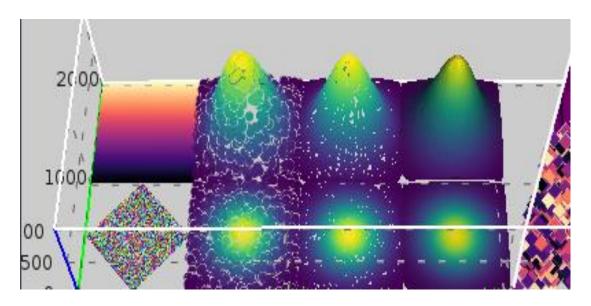

silx.gui.plot3d: ScalarFieldView

Add light control

 Support of 3x3 matrix transform (for non-orthogonal axes support) to 3D scalar field visualization widget (ScalarFieldView):

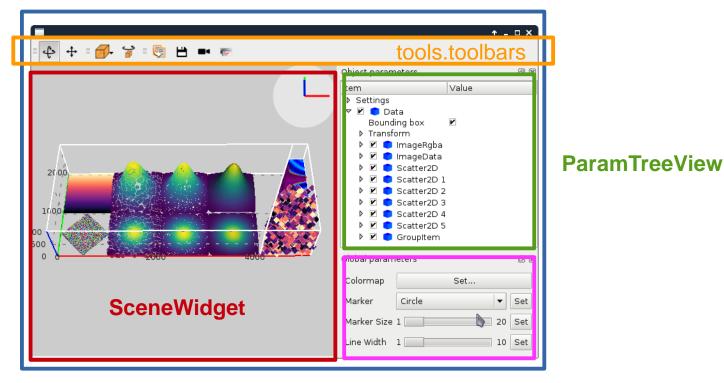

scalarFieldView.setTransformMatrix((

General purpose 3D visualization widget and associated tools:Goal: Replacement candidate for PyMca OpenGL tab



silx.gui.plot3d.items:

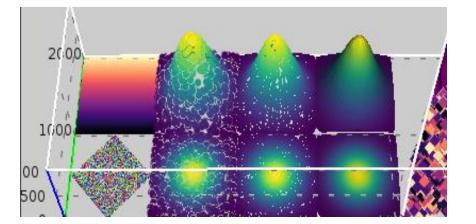
- Images: ImageData, ImageRgba
- Scatter plots: Scatter2D, Scatter3D
- Scalar fields (with a cut plane and isosurfaces): ScalarField3D
- A clipping plane: ClipPlane
- 3D meshes: Mesh
- **Groups:** GroupItem, GroupWithAxesItem

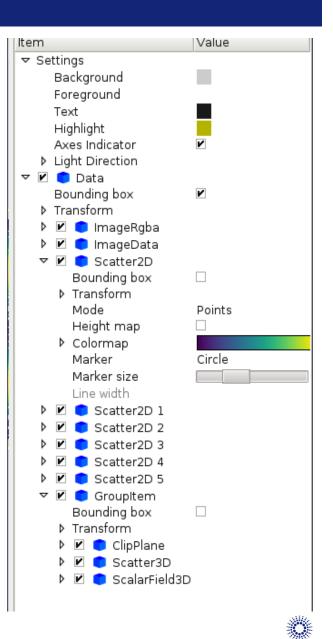


silx.gui.plot3d: Scene widgets structure

SceneWindow

tools.GroupPropertiesWidget




silx.gui.plot3d: ParamTreeView

Content/Parameter tree based on:

- silx.gui.plot3d.ParamTreeView
- SceneWidget.model()

If there is interest,
 this can be adapted to 1D, 2D PlotWidget

ESRF

- Interaction:
 - Item selection
 - Picking of data
 - Selection/edition of Region of Interest (line, box)
- Display of statistical indicators (at least for 3D scalar fields)
- Additional scene items:
 - Surface plot for images
 - 3D complex data as colormapped isosurfaces
 - Vector field
 - ...
- Testing: Lack of automated tests
- Visual improvements: transparency, ticks and labels layout...
 Optimizations:
 - Benchmarking
 - Threaded computation of isosurfaces, delaunay

- Non-linear least squares with constraints on fitting parameters
 - Has a configuration widget for easy integration into GUIs
- 1D peak search
- Isosurface calculations with Marching Cubes algorithm
 - For 4D visualization (visualization of scalar fields)
- N-dimensional histograms based on look-up tables
- Fitting functions with automatic estimation of initial parameters
- 1D and 2D median filters

Median Filter (C++)

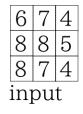
silx.math.medianfilter

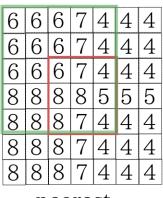
medfilt(data, kernel_size=3, bool conditional=False)

- 1D-2D median filter
 - data: 1D or 2D numpy array
 - (specialized functions medfilt1d and medfilt2d available)
 - kernel_size int or tuple
 - Conditional if True apply conditional median filtering (apply only if pixel value is window minimum or maximum)
- Example:

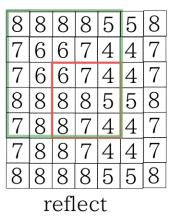
from silx.math.medianfilter import medfilt2d dataOut = medfilt2d(image,

kernel_size=(3, 3),
conditional=False)




Median Filter (silx.math.medianfilter)

Previously only 'nearest' mode.


Cpp Implementation of 'reflect', 'mirror' and 'shrink' modes.

kernel size = 5Treatment of the value '6'

4	7	8	7	4	7	8			
5	8	8	8	5	8	8			
4	7	6	$\overline{7}$	4	7	6			
5	8	8	8	5	8	8			
4	7	8	7	4	7	8			
5	8	8	8	5	8	8			
4	7	6	7	4	7	6			
mirror									

shrink

nearest

from silx.math import medianfilter *import numpy*

img = numpy.random.rand(48, 48) medianfilter.medfilt2d(image=img, kernel_size=3, conditional=False, mode='reflect')

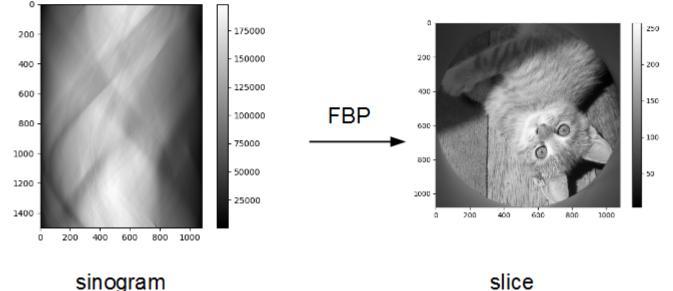
Median Filter (GPU)

silx.opencl.medfilt2d

- OpenCL implementation of the median filter
 - Works best on GPU, and large neighborhood
 - PR pending (not yet merged)

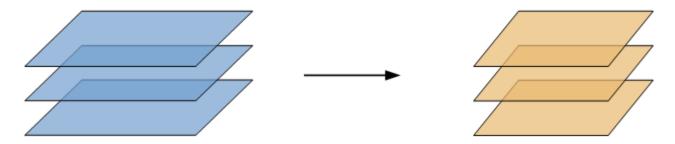
from silx.opencl import medfilt2d from scipy.misc import ascent from scipy.ndimage import filters

img = ascent().astype("float32")
%timeit filters.median_filter(img, (55,55))


import silx.image
%timeit silx.image.medfilt2d(img, (55,55))

from silx.opencl import medifilt %timeit medfilt.medfilt2d(img, (55,55))

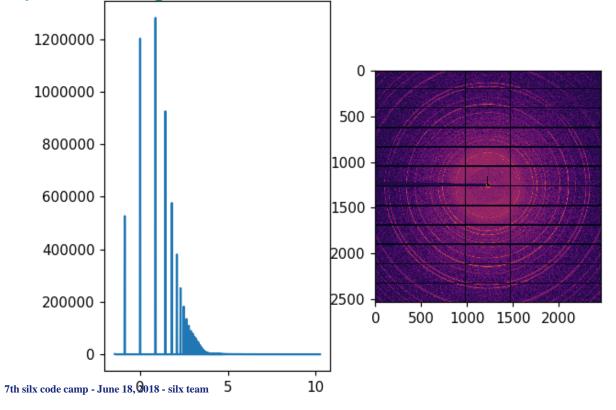
- Filtered Back-Projection (FBP) is the usual reconstruction method in (parallel) tomography
- silx now provides a FBP module
- · The filtering can be omitted if the data is already filtered
- Works on both GPU and CPU (Mac OS is not supported)


Sinogran

- Principle : define a geometry and use it to reconstruct one or several sinograms.
- Geometry = sinogram shape, [series of angles, slice shape, rotation center position]

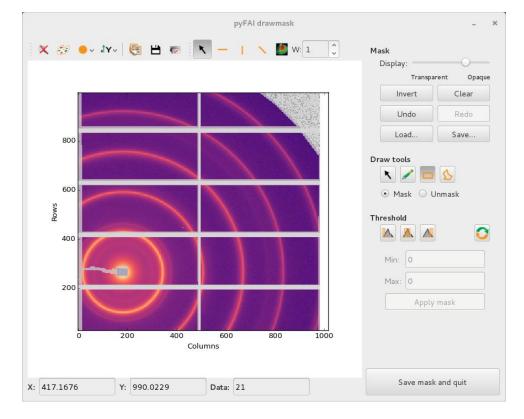
```
# Allocate the memory for volume reconstruction
num_sinos = sinograms_stack.shape[0]
reco = np.zeros((num_sinos,) + tomo_geometry.shape)
# Reconstruct
for i in range(num_sinos):
```

```
reco[i] = tomo.fbp(sinograms_stack[i])
```



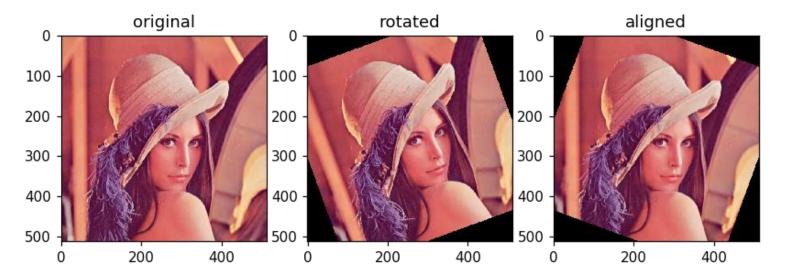
silx

CoDec : Byte offset for CBF processing on GPU


- silx.opencl.codec.byte_offset
 - OpenCL-based CBF compression
- 10x speed-up for compression/decompression of CBF streams
 - Compatible with the new Image processing framework
 - Compatible with pyFAI azimuthal integration
- Accepted in J. Synchrotron Radiation https://doi.org/10.1107/S1600577518000607

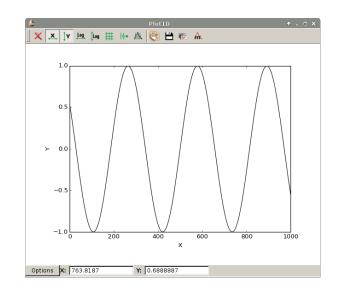
- Basic shapes for masks
 - Line profiles
 - Polygons
 - Circle
- Bilinear interpolation
 - Used to scale up/down images to display
- Gaussian blurring of images
 - GPU accelerated via OpenCL
- Image registration and alignment (SIFT)
 - GPU accelerated via OpenCL

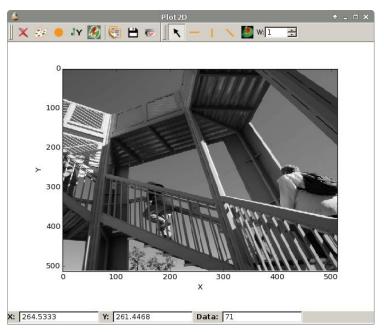
- Median Filter
 - GPU accelerated via OpenCL


- New image processing framework:
 - Allows to exchange buffers on the device
 - Allows the creation of work-flow without copying data back & forth
 - Better performances
- Few image treatments implemented:
 - Buffer conversion to float arrays from any integer
 - Min/Max search (double-reduction)
 - Image normalization
 - Image histogram
- Tutorial available:
 - https://github.com/kif/silx/blob/1199_ocl_image/doc/source/Tutorials/Image.ipynb

- Use the "image" framework.
- Major re-work for compatibility with PyOpenCL > 2015
- Compatibility with "spectre" corrections
- Many memory-leak corrected
- New tutorial based on jupyter notebook.

https://github.com/silx-kit/silx/blob/master/doc/source/Tutorials/Sift/sift.ipynb


pylab like module on steroids


• 1D plotting: ROI, fitting & printing

>>> from silx import sx
>>> from numpy import sin, linspace
>>> sx.plot(sin(linspace(-10, 10, 1000)))

• 2D display: intensity, mask, profile

>>> from scipy.misc import ascent
>>> sx.imshow(ascent())

silx.io: input / output

- Built-in support of CSV, SPEC and TIFF
 - Images, SPEC files accessed in the same way as HDF5 files

Unified widget dealing with ALL supported data formats!!!!!

- Provide bridges SPEC $\leftarrow \rightarrow$ HDF5 and octave $\leftarrow \rightarrow$ HDF5
- Utilities to save and restore configurations as HDF5, json or ini files
- HDF5 is supported via h5py
- Images (and many detector formats) are supported via FabIO

• This new module provides a common base for *silx.io.spech5* and *silx.io.fabioh5* to provide the h5py-like API for various data formats.

• If new formats are handled by silx in the future, and they inherit the commonh5 classes, they will benefit from the existing tools:

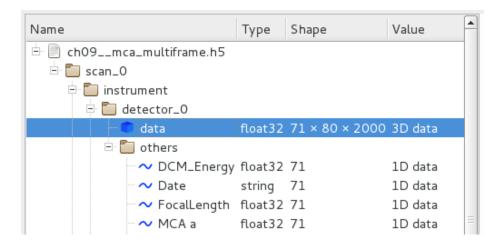
- silx.io.convert
- *silx.io.utils* (is_dataset, is_group, is_file,...)

- New functions
 - is_NXentry_with_default_NXdata(group)
 - is_NXroot_with_default_NXdata(group)
 - get_default(group)
 - Returns default silx.io.NXdata object or None. Group parameter can be NXdata, NXentry or NXroot.
 - save_NXdata(filename, signal, axes=None,

signal_name="data", axes_names=None, signal_long_name=None, axes_long_names=None, signal_errors=None, axes_errors=None, title=None, interpretation=None, nxentry_name="entry", nxdata_name=None)

• Module

- Before only SPEC files could be converted (*silx.io.spectoh5*)
- New silx.io.convert supports Fabio images (replaces spectoh5)
- Application
- New command line application to convert files to HDF5


silx convert –help silx convert filename

Convert series of single frame images (EDF, TIFF...) into a HDF5 multiframe stack

silx convert --file-pattern ch09__mca_0005_0000_%d.edf -o ch09__mca_multiframe.h5

silx convert -h

Merging SPEC and EDF files.

• Step 1. Convert the SPEC file to HDF5 file

silx convert spec file name -o hdf5 file name.h5

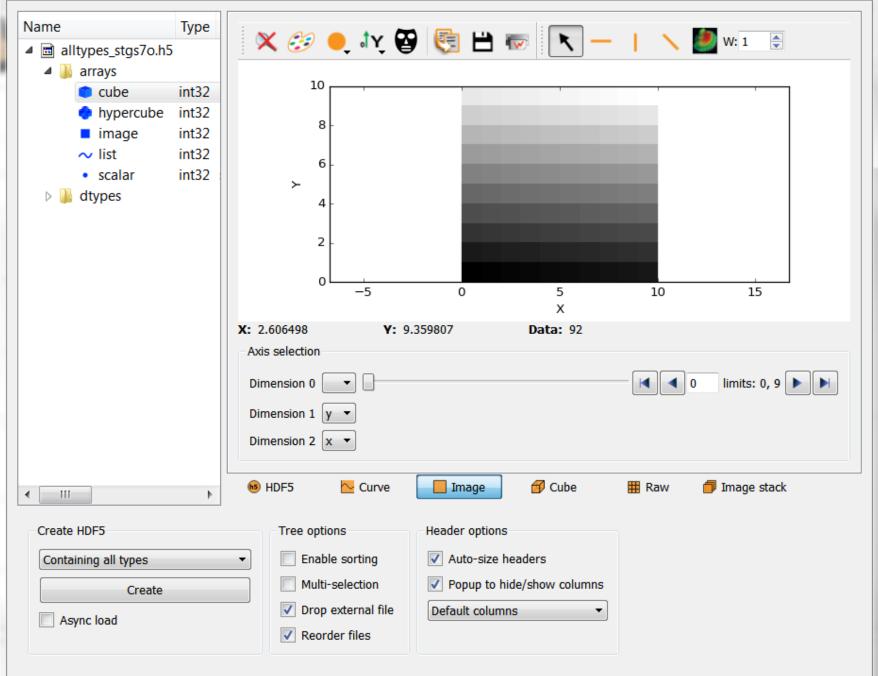
• Step 2. Convert the EDF files selecting target path in generated HDF5 file

• Hint Multiple indices supported (indexed files, indexed directories, ...)

root_ssss_dddd_nnnn.edf

--file-pattern=root_%04d_%04d_\$04d.edf -begin=1,0,0 -end=1,0,99

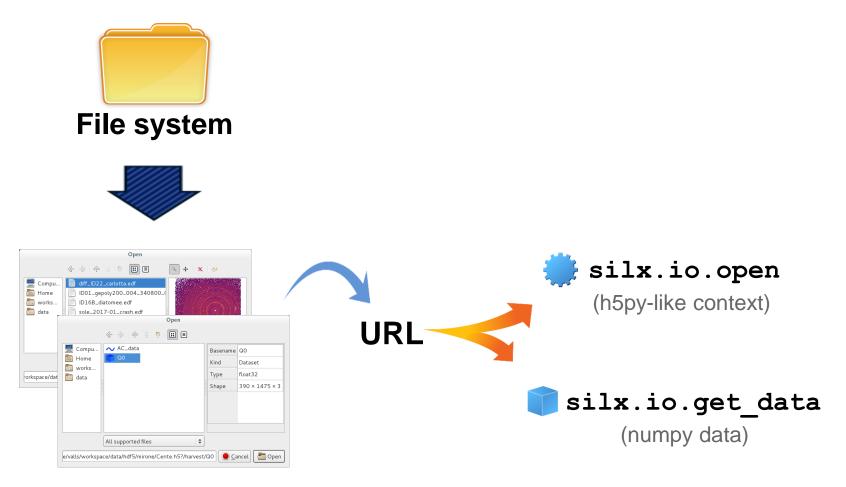
Silx HDF5 widget example


Туре Name 0 1 2 3 4 5 alltypes_stgs70.h5 0 0 2 3 4 5 1 arrays 4 int32 🔋 cube 1 10 11 12 13 14 15 hypercube int32 21 22 2 20 23 24 25 image int32 31 32 33 34 35 3 30 ~ list int32 Ξ scalar int32 41 42 45 4 40 43 44 dtypes \triangleright 5 50 51 52 53 54 55 6 60 61 62 65 63 64 71 72 73 75 7 70 74 8 80 81 82 83 84 85 8 - ---- -- -€ 1 HI. Þ. Axis selection **4** 0 limits: 0, 9 🕨 Dimension 0 • Dimension 1 col • Dimension 2 row -6 HDF5 🗠 Curve 📒 Image 🔗 Cube 🖩 Raw 🗇 Image stack 111 Þ ٠ Create HDF5 Tree options Header options Enable sorting Auto-size headers Containing all types Multi-selection Popup to hide/show columns Create Drop external file Default columns ٠ Async load Reorder files

- 0

х

Silx HDF5 widget example



_ 0

х

Dialog to reach data

silx.gui.dialog

Data dialogs

			Open		
		« » « I	::	 ▲ + × 	¢9
[Compu Home works data	 countrate_corre countrate_corre countrate_corre data_origin data_size flatfield hv Open 	ction_lookup_t]
Compu A Home works data	diff_ID22_	carlotta.edf bly200_004_340800. tomee.edf 7-01_crash.edf		 	256 × 1024 L Coper
orkspace/data/	All supported fi	iles ¢		ncel	

	Open		
Compu Home works data	AC_data	Basename Kind Type Shape	Q0 Dataset float32 390 × 1475 × 3
	All supported files		
e/valls/workspa	ancel 🔚 Open		

ImageFileDialog

- Specialised to select an image
- Support slicing of hypercubes
- Support h5-like
- Support raw image files (edf, tiff, cbf)

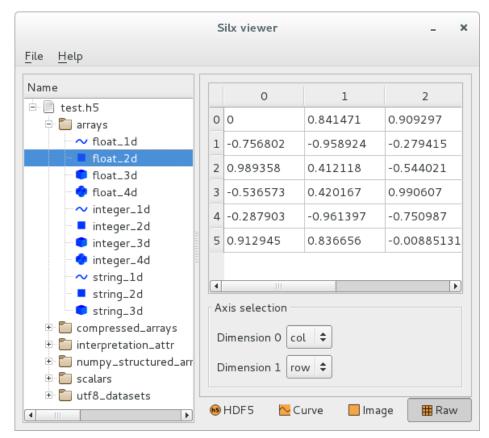
DataFileDialog

- Select anything from h5-like structure
- Filter to select only datasets or groups

• Custom schemes

- silx:///home/user/foo.edf?path=/group/&slice=5
- fabio:///home/user/foo.edf?slice=5
- Also available for relative paths
- Reach data from datasets and fabio URLs

data = silx.io.get_data(url)


• Reach data from other URLs

```
with silx.io.open(url) as node:
    print(node)
```

- An object is provided to parse our URLs
 - silx.io.url.DataUrl
- We also support h5pyd URLs
 - http://127.0.0.1:5000/tall.public.hdfgroup.org

- Browse and display HDF5 files (plus any supported file as HDF5)
- File from:
 - command line / open dialog / drag and drop
- Commands
 - silx view <filename>
 - python -m silx view
 - python3 -m silx view
 - ./bootstrap.py silx view

- Data viewer for viewing data in a Nexus NXdata group
- Supports:
 - Scalars, curves, images, scatters, image stack for 3D data
 - Uncertainties, displayed as error bars for 1D data
 - Axes scaling (via @axes)
 - Axes labels (via @long_name)
 - Forcing of predefined views for high dimensionality data (via @interpretation=scalar/spectrum/image)
- See examples/hdf5widget.py for a demo (Create HDF5 > Containing NXdata groups)

silx view – Generic Viewer Interpreting NXdata Groups

I Silx HDF5 widget example		
Name Images Images </td <td>TypeShapeValuefloat641281D datafloat641281D datafloat641281D datafloat641281D datafloat641281D data</td> <td>X X Y I I I I I I I I I I I I I I I I I</td>	TypeShapeValuefloat641281D datafloat641281D datafloat641281D datafloat641281D datafloat641281D data	X X Y I I I I I I I I I I I I I I I I I
Create HDF5 Containing NXdata groups Create Async load	Tree options Tree options Enable sorting Multi-selection Orop external f Reorder files	

ESRF

NXdataViewer

Name Type	Shape Value		
a 🖻 nxdata_7y6vo4.h5		📉 🤣 🥌 🎝 🚱 🛃 💾 📼 🛛 🥆 — 📋 🔪 🛄 W:1	6. V
D La cubes			
▲ jimages		NXdata group /images/2D_irregular_data: data	
D_irregular_data		60	
D_iregular_image D_images			
D_images			
Scalars		5월 40	
Image: Seatters			
> 鷆 spectra		30 Sin 20	
		ê 20 -	
		20 40 60 80 100 120	
		columns_coordinates	
		X: 88.20926 Y: 57.95693 Data: -	
		Selector	ē×
		Dimension 0	
		Dimension 1	
		Displayed data: data[:, :]	
		10 HDF5	
III	•		
Create HDF5	Tree options	Header options	
Containing NXdata groups	Enable sorting	Auto-size headers	
Create	Multi-selection	Popup to hide/show columns	
	Drop external file	e Default columns 🔹	
Async load			

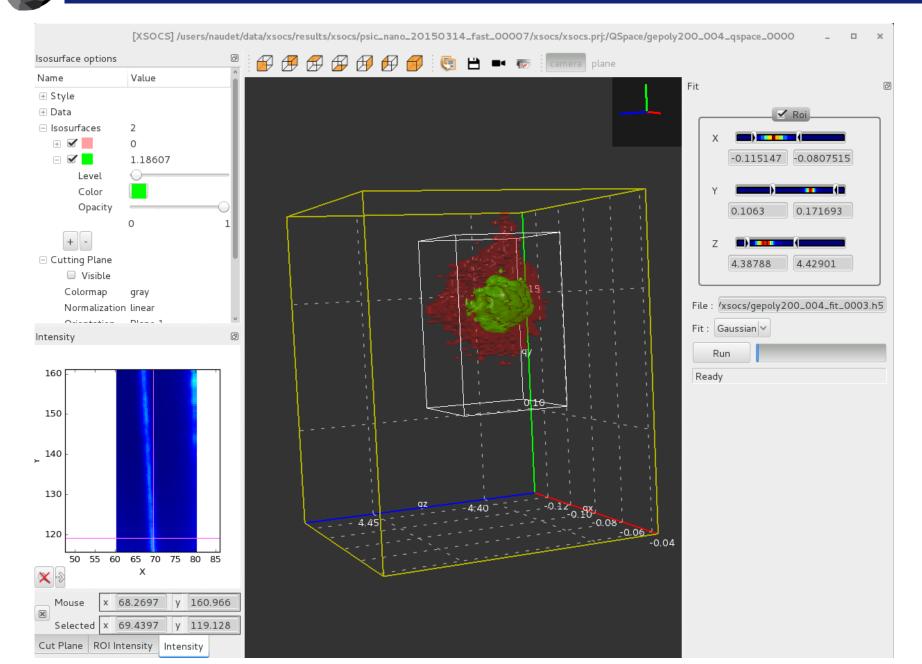
ESRF

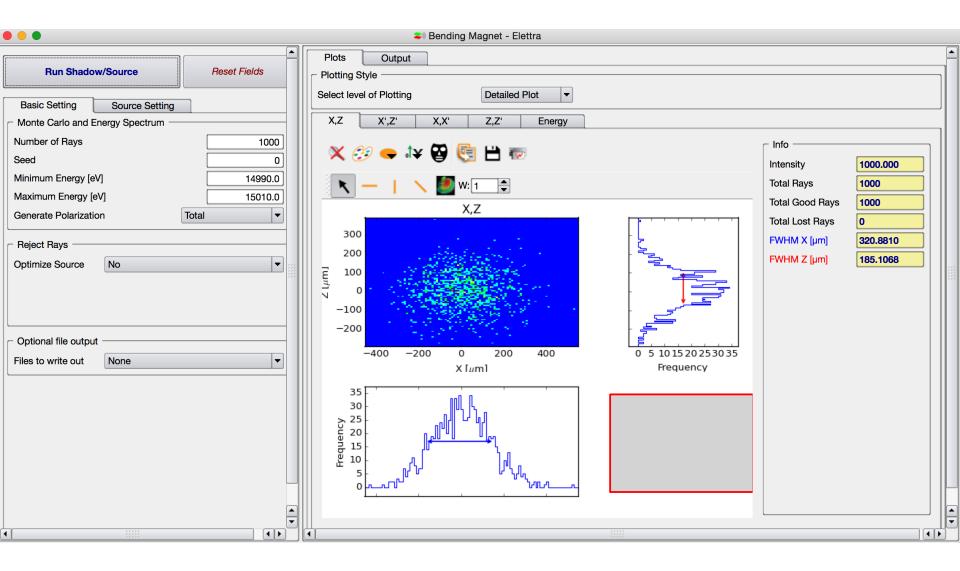
• Display *NXdata* view when viewing a *NXentry* or a *NXroot* group defining a @default attribute pointing to a valid *NXdata* group.

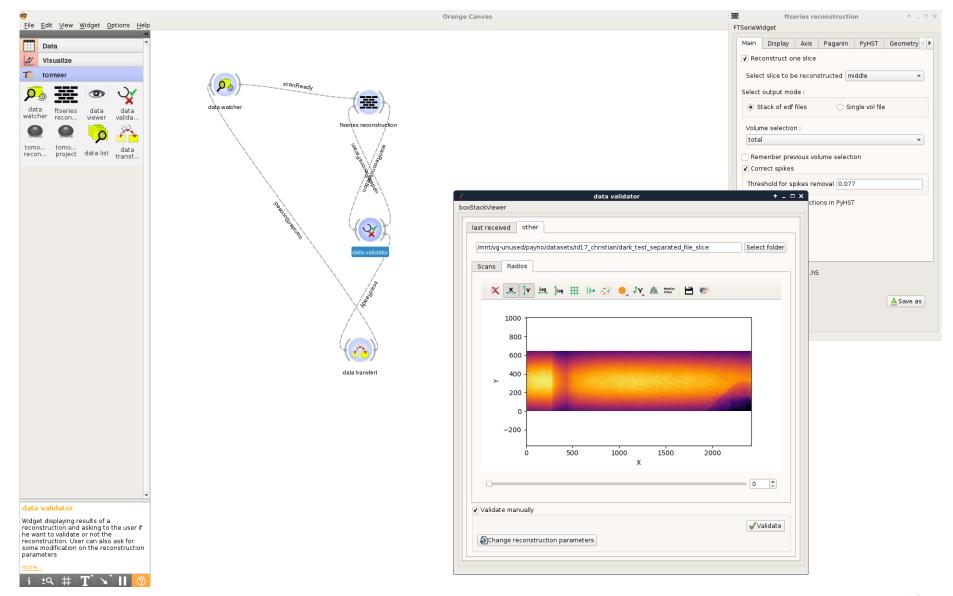
root:NXroot @default = "main_entry" main_entry:NXentry @default = "data"

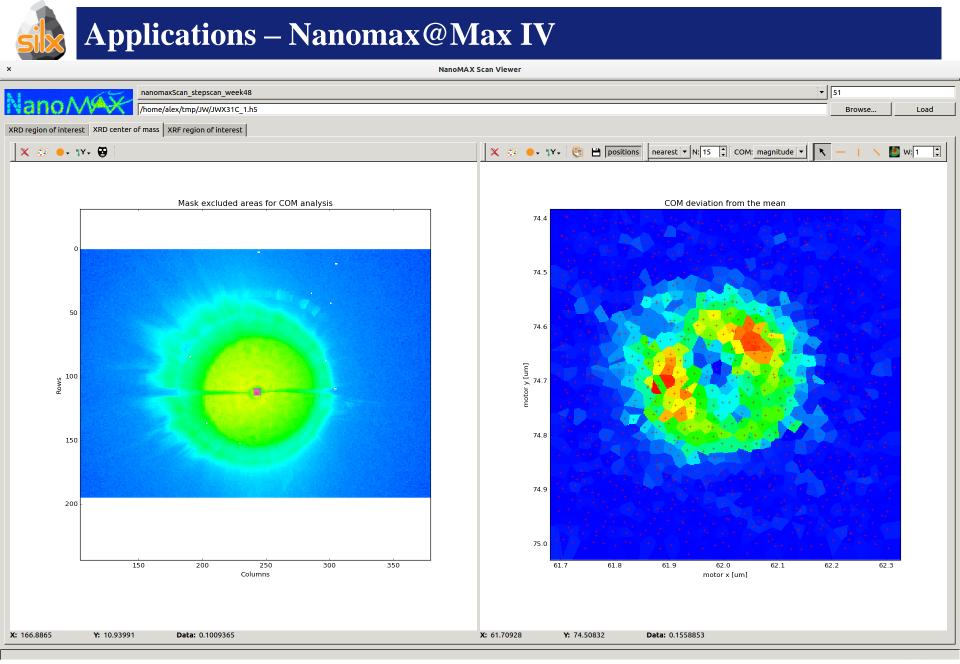
data:NXdata @signal = "counts" @axes = "mr" counts: float[100] mr: float[100]

secondary_entry:Nxentry

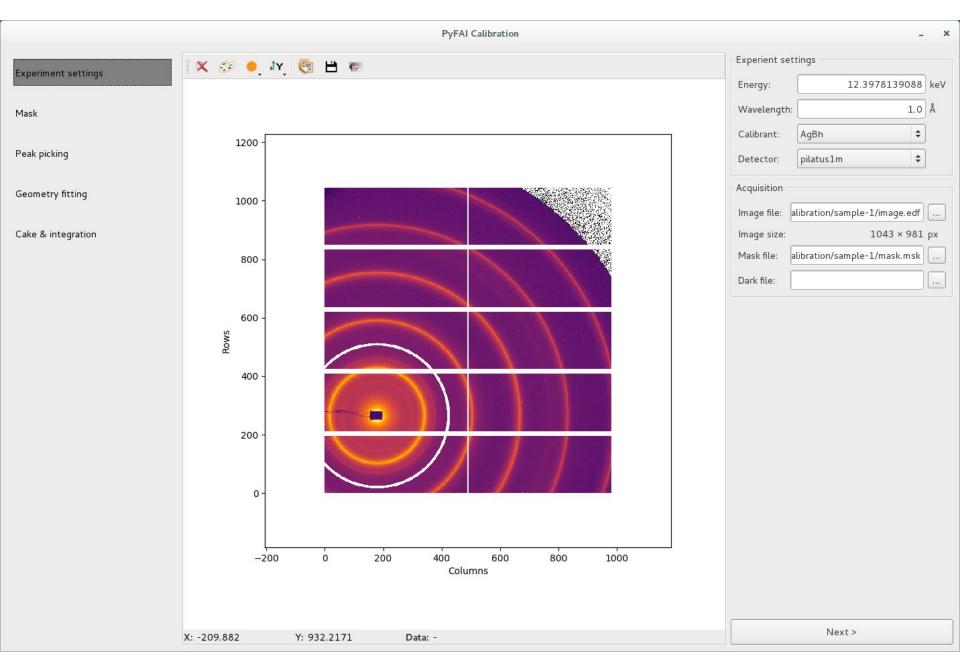

...




Applications - OASYS



Applications – Tomography Workflows



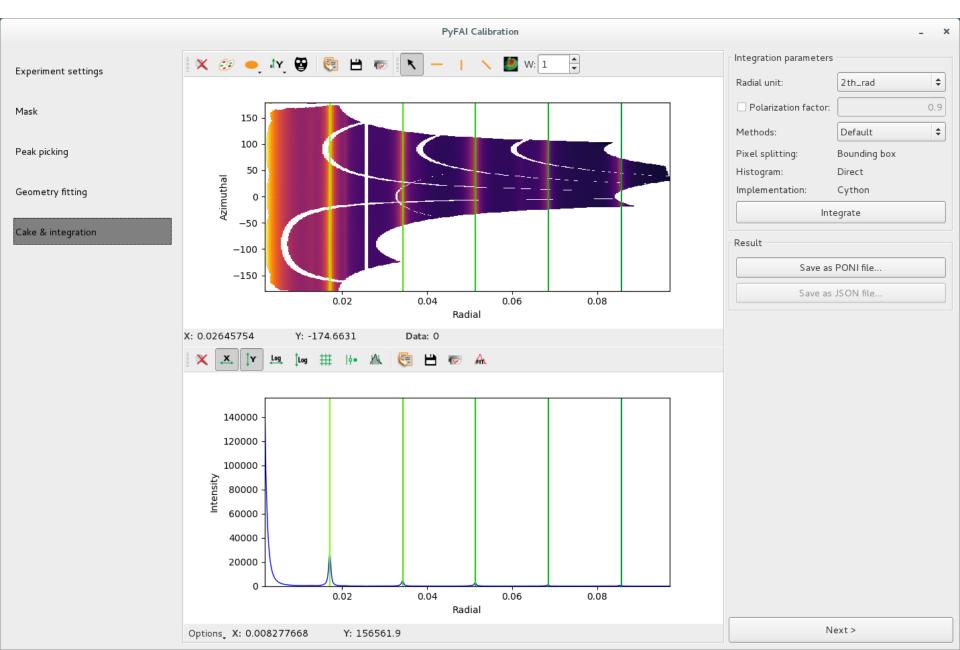
pyFAI Calibration - Settings

pyFAI Calibration - Mask

	PyFAI Calibration	_ ×
Experiment settings	× × × 😕 🕫 🗄 📼	Mask
Mask		Display: Opaque
Peak picking		Undo Redo
Geometry fitting		Draw tools
Cake & integration		Threshold
		Min: 0 Max: 0 Apply mask Mask not finite values
		Plask hot linite values
	X:-103.4656 Y: 339.5211 Value: n/a	Next >

pyFAI Calibration – Peak Picking

	PyFAI Calibration	_ ×
Experiment settings Mask	X X X 39 pm 😨 🖿 👦	How to The target is to identify at least 2 rings by location and number. Then to extract all peaks automatically. Click on the ring you want to select. Usually it is the first one, else update it's number in the list of the
Peak picking Geometry fitting		picked rings. Use the recalibration tool to extract more peaks automatically. Pick peaking
Cake & integration		Mode: Ring Single pick Picked rings Name Peaks Ring number a 227 1 2 2 b 177 2 2 2 c 146 3 2 2 d 132 4 2 Recalibrate Max rings to extract: Max rings to extract: 4 4 Number of peak per degree: 1.00 7
	X: -127.3504 Y: 763.4291 Value: n/a	Next >



pyFAI Calibration – Geometry Fitting

	PyFAI Calibration	_ ×
Experiment settings	X 🔍 🌮 🞢 👼 💾 📼	How to The target is to identify all rings of the image. The algorithm is iterative. It will adjust parameters to
Mask		improve the fit. You can lock values to avoid modification of them.
Peak picking		You can reset the state to start again from the begining. If rings are well identified on the image you can check the integration on the next step.
Geometry fitting		Experiment settings
Cake & integration		Wavelength: 1.0 Å
		Geometry Distance: 1.63092014216 m
	A A A A A A A A A A A A A A A A A A A	PONI1: -0.0357913539286 m
		PONI2: -0.00987467071189 m
		Rotation 1: -0.0250032819825 rad a Rotation 2: 0.0496666955827 rad a
		Rotation 3: 2.05963351345e-05 rad
		Action
		Reset
	X: -124.0285 Y: 890.3549 Value: n/a	Next >

pyFAI Calibration – Cake and Integrtion

PyMca - silx DataViewer replacing PyMca TableView

💽 PyMca - [Main Window]	Daphnia_float32.h5 /data/NXdata/data
💽 File Tools Window Help	General Attributes DataView
<u> </u>	MCA SC
Daphnia_float32.h5	
File/Group/Dataset Description Shape Daphnia_float32.h5	
data PyMca saved 3D Array NXdata Data data Dataset 175 x 119 :	60 - 80 -
dim_0 Dataset 175 dim_1 Dataset 119 dim_2 Dataset 2048	
Counter Axes Signals Monitor	120 - 0 140 -
	×
۹ (III) ا	Axis selection
ADD SCAN REMOVE SCAN REPLACE SCAN	Dimension 0 y Dimension 1 x Dimension 1 x
ADD MCA REMOVE MCA REPLACE MCA	
ADD 2D REMOVE 2D REPLACE 2D	Options Dimension 2 T I I I I I I I I I I I I I I I I I I
ADD 3D REMOVE 3D REPLACE 3D	Active Curve 🐻 HDF5 🗠 Curve 🔲 Image 🔗 Cube 🏢 Raw 🗊 Image star

This release

- I/O dialogs, h5pyd support, data URLs
- silx view full support of NXdata groups
- silx convert as generic merge tool
- Plot3D: SceneGraph and SceneItems.
- OpenCL: image processing, byte offset...

• 2018

- SceneGraph interaction
- Statistics in Curves, Images, Volumes
- PyMca using silx 3D graphics
- Let the library grow according to the needs of applications

- Identify something you are interested on
- Try to achieve it
- Wow! I can do what I want, what next?
 - Start again
 - Make suggestions
 - Contribute with a demo/recipe
- I cannot do it
 - Ask help

- Help non-core developers
- Create issues
 - Bugs
 - Documentation
 - Desired features
- Fix issues
 - Bugs
 - Documentation
 - Unlikely for new features
- Review pull requests

- Try to start with a single entry point <u>www.silx.org</u>
 - You should be able to install 0.7.0 version
- For this code camp we'll use 0.8.0a, you can either:
 - clone the repository (and use your compilation chain)
 - install a nightly built package (debian)
 - use a pre-built binary wheel:
 - http://www.silx.org/pub/wheelhouse/

