Source code for silx.gui.plot.items.image

# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2017-2019 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
"""This module provides the :class:`ImageData` and :class:`ImageRgba` items
of the :class:`Plot`.
"""

__authors__ = ["T. Vincent"]
__license__ = "MIT"
__date__ = "20/10/2017"


try:
    from collections import abc
except ImportError:  # Python2 support
    import collections as abc
import logging

import numpy

from ....utils.proxy import docstring
from .core import (Item, LabelsMixIn, DraggableMixIn, ColormapMixIn,
                   AlphaMixIn, ItemChangedType)
from ._pick import PickingResult


_logger = logging.getLogger(__name__)


def _convertImageToRgba32(image, copy=True):
    """Convert an RGB or RGBA image to RGBA32.

    It converts from floats in [0, 1], bool, integer and uint in [0, 255]

    If the input image is already an RGBA32 image,
    the returned image shares the same data.

    :param image: Image to convert to
    :type image: numpy.ndarray with 3 dimensions: height, width, color channels
    :param bool copy: True (Default) to get a copy, False, avoid copy if possible
    :return: The image converted to RGBA32 with dimension: (height, width, 4)
    :rtype: numpy.ndarray of uint8
    """
    assert image.ndim == 3
    assert image.shape[-1] in (3, 4)

    # Convert type to uint8
    if image.dtype.name != 'uint8':
        if image.dtype.kind == 'f':  # Float in [0, 1]
            image = (numpy.clip(image, 0., 1.) * 255).astype(numpy.uint8)
        elif image.dtype.kind == 'b':  # boolean
            image = image.astype(numpy.uint8) * 255
        elif image.dtype.kind in ('i', 'u'):  # int, uint
            image = numpy.clip(image, 0, 255).astype(numpy.uint8)
        else:
            raise ValueError('Unsupported image dtype: %s', image.dtype.name)
        copy = False  # A copy as already been done, avoid next one

    # Convert RGB to RGBA
    if image.shape[-1] == 3:
        new_image = numpy.empty((image.shape[0], image.shape[1], 4),
                                dtype=numpy.uint8)
        new_image[:, :, :3] = image
        new_image[:, :, 3] = 255
        return new_image  # This is a copy anyway
    else:
        return numpy.array(image, copy=copy)


class ImageBase(Item, LabelsMixIn, DraggableMixIn, AlphaMixIn):
    """Description of an image"""

    def __init__(self):
        Item.__init__(self)
        LabelsMixIn.__init__(self)
        DraggableMixIn.__init__(self)
        AlphaMixIn.__init__(self)
        self._data = numpy.zeros((0, 0, 4), dtype=numpy.uint8)

        self._origin = (0., 0.)
        self._scale = (1., 1.)

    def __getitem__(self, item):
        """Compatibility with PyMca and silx <= 0.4.0"""
        if isinstance(item, slice):
            return [self[index] for index in range(*item.indices(5))]
        elif item == 0:
            return self.getData(copy=False)
        elif item == 1:
            return self.getLegend()
        elif item == 2:
            info = self.getInfo(copy=False)
            return {} if info is None else info
        elif item == 3:
            return None
        elif item == 4:
            params = {
                'info': self.getInfo(),
                'origin': self.getOrigin(),
                'scale': self.getScale(),
                'z': self.getZValue(),
                'selectable': self.isSelectable(),
                'draggable': self.isDraggable(),
                'colormap': None,
                'xlabel': self.getXLabel(),
                'ylabel': self.getYLabel(),
            }
            return params
        else:
            raise IndexError("Index out of range: %s" % str(item))

    def setVisible(self, visible):
        """Set visibility of item.

        :param bool visible: True to display it, False otherwise
        """
        visible = bool(visible)
        # TODO hackish data range implementation
        if self.isVisible() != visible:
            plot = self.getPlot()
            if plot is not None:
                plot._invalidateDataRange()
        super(ImageBase, self).setVisible(visible)

    @docstring(Item)
    def pick(self, x, y):
        if super(ImageBase, self).pick(x, y) is not None:
            plot = self.getPlot()
            if plot is None:
                return None

            dataPos = plot.pixelToData(x, y)
            if dataPos is None:
                return None

            origin = self.getOrigin()
            scale = self.getScale()
            column = int((dataPos[0] - origin[0]) / float(scale[0]))
            row = int((dataPos[1] - origin[1]) / float(scale[1]))
            return PickingResult(self, ([row], [column]))

        return None

    def _isPlotLinear(self, plot):
        """Return True if plot only uses linear scale for both of x and y
        axes."""
        linear = plot.getXAxis().LINEAR
        if plot.getXAxis().getScale() != linear:
            return False
        if plot.getYAxis().getScale() != linear:
            return False
        return True

    def _getBounds(self):
        if self.getData(copy=False).size == 0:  # Empty data
            return None

        height, width = self.getData(copy=False).shape[:2]
        origin = self.getOrigin()
        scale = self.getScale()
        # Taking care of scale might be < 0
        xmin, xmax = origin[0], origin[0] + width * scale[0]
        if xmin > xmax:
            xmin, xmax = xmax, xmin
        # Taking care of scale might be < 0
        ymin, ymax = origin[1], origin[1] + height * scale[1]
        if ymin > ymax:
            ymin, ymax = ymax, ymin

        plot = self.getPlot()
        if plot is not None and not self._isPlotLinear(plot):
            return None
        else:
            return xmin, xmax, ymin, ymax

    @docstring(DraggableMixIn)
    def drag(self, from_, to):
        origin = self.getOrigin()
        self.setOrigin((origin[0] + to[0] - from_[0],
                        origin[1] + to[1] - from_[1]))

    def getData(self, copy=True):
        """Returns the image data

        :param bool copy: True (Default) to get a copy,
                          False to use internal representation (do not modify!)
        :rtype: numpy.ndarray
        """
        return numpy.array(self._data, copy=copy)

    def getRgbaImageData(self, copy=True):
        """Get the displayed RGB(A) image

        :returns: numpy.ndarray of uint8 of shape (height, width, 4)
        """
        raise NotImplementedError('This MUST be implemented in sub-class')

    def getOrigin(self):
        """Returns the offset from origin at which to display the image.

        :rtype: 2-tuple of float
        """
        return self._origin

    def setOrigin(self, origin):
        """Set the offset from origin at which to display the image.

        :param origin: (ox, oy) Offset from origin
        :type origin: float or 2-tuple of float
        """
        if isinstance(origin, abc.Sequence):
            origin = float(origin[0]), float(origin[1])
        else:  # single value origin
            origin = float(origin), float(origin)
        if origin != self._origin:
            self._origin = origin

            # TODO hackish data range implementation
            if self.isVisible():
                plot = self.getPlot()
                if plot is not None:
                    plot._invalidateDataRange()

            self._updated(ItemChangedType.POSITION)

    def getScale(self):
        """Returns the scale of the image in data coordinates.

        :rtype: 2-tuple of float
        """
        return self._scale

    def setScale(self, scale):
        """Set the scale of the image

        :param scale: (sx, sy) Scale of the image
        :type scale: float or 2-tuple of float
        """
        if isinstance(scale, abc.Sequence):
            scale = float(scale[0]), float(scale[1])
        else:  # single value scale
            scale = float(scale), float(scale)

        if scale != self._scale:
            self._scale = scale

            # TODO hackish data range implementation
            if self.isVisible():
                plot = self.getPlot()
                if plot is not None:
                    plot._invalidateDataRange()

            self._updated(ItemChangedType.SCALE)


[docs]class ImageData(ImageBase, ColormapMixIn): """Description of a data image with a colormap""" def __init__(self): ImageBase.__init__(self) ColormapMixIn.__init__(self) self._data = numpy.zeros((0, 0), dtype=numpy.float32) self._alternativeImage = None self.__alpha = None def _addBackendRenderer(self, backend): """Update backend renderer""" plot = self.getPlot() assert plot is not None if not self._isPlotLinear(plot): # Do not render with non linear scales return None if (self.getAlternativeImageData(copy=False) is not None or self.getAlphaData(copy=False) is not None): dataToUse = self.getRgbaImageData(copy=False) else: dataToUse = self.getData(copy=False) if dataToUse.size == 0: return None # No data to display return backend.addImage(dataToUse, origin=self.getOrigin(), scale=self.getScale(), z=self.getZValue(), colormap=self.getColormap(), alpha=self.getAlpha()) def __getitem__(self, item): """Compatibility with PyMca and silx <= 0.4.0""" if item == 3: return self.getAlternativeImageData(copy=False) params = ImageBase.__getitem__(self, item) if item == 4: params['colormap'] = self.getColormap() return params
[docs] def getRgbaImageData(self, copy=True): """Get the displayed RGB(A) image :returns: Array of uint8 of shape (height, width, 4) :rtype: numpy.ndarray """ alternative = self.getAlternativeImageData(copy=False) if alternative is not None: return _convertImageToRgba32(alternative, copy=copy) else: # Apply colormap, in this case an new array is always returned colormap = self.getColormap() image = colormap.applyToData(self.getData(copy=False)) alphaImage = self.getAlphaData(copy=False) if alphaImage is not None: # Apply transparency image[:, :, 3] = image[:, :, 3] * alphaImage return image
[docs] def getAlternativeImageData(self, copy=True): """Get the optional RGBA image that is displayed instead of the data :param bool copy: True (Default) to get a copy, False to use internal representation (do not modify!) :rtype: Union[None,numpy.ndarray] """ if self._alternativeImage is None: return None else: return numpy.array(self._alternativeImage, copy=copy)
def getAlphaData(self, copy=True): """Get the optional transparency image applied on the data :param bool copy: True (Default) to get a copy, False to use internal representation (do not modify!) :rtype: Union[None,numpy.ndarray] """ if self.__alpha is None: return None else: return numpy.array(self.__alpha, copy=copy) def setData(self, data, alternative=None, alpha=None, copy=True): """"Set the image data and optionally an alternative RGB(A) representation :param numpy.ndarray data: Data array with 2 dimensions (h, w) :param alternative: RGB(A) image to display instead of data, shape: (h, w, 3 or 4) :type alternative: Union[None,numpy.ndarray] :param alpha: An array of transparency value in [0, 1] to use for display with shape: (h, w) :type alpha: Union[None,numpy.ndarray] :param bool copy: True (Default) to get a copy, False to use internal representation (do not modify!) """ data = numpy.array(data, copy=copy) assert data.ndim == 2 if data.dtype.kind == 'b': _logger.warning( 'Converting boolean image to int8 to plot it.') data = numpy.array(data, copy=False, dtype=numpy.int8) elif numpy.iscomplexobj(data): _logger.warning( 'Converting complex image to absolute value to plot it.') data = numpy.absolute(data) self._data = data if alternative is not None: alternative = numpy.array(alternative, copy=copy) assert alternative.ndim == 3 assert alternative.shape[2] in (3, 4) assert alternative.shape[:2] == data.shape[:2] self._alternativeImage = alternative if alpha is not None: alpha = numpy.array(alpha, copy=copy) assert alpha.shape == data.shape if alpha.dtype.kind != 'f': alpha = alpha.astype(numpy.float32) if numpy.any(numpy.logical_or(alpha < 0., alpha > 1.)): alpha = numpy.clip(alpha, 0., 1.) self.__alpha = alpha # TODO hackish data range implementation if self.isVisible(): plot = self.getPlot() if plot is not None: plot._invalidateDataRange() self._updated(ItemChangedType.DATA)
[docs]class ImageRgba(ImageBase): """Description of an RGB(A) image""" def __init__(self): ImageBase.__init__(self) def _addBackendRenderer(self, backend): """Update backend renderer""" plot = self.getPlot() assert plot is not None if not self._isPlotLinear(plot): # Do not render with non linear scales return None data = self.getData(copy=False) if data.size == 0: return None # No data to display return backend.addImage(data, origin=self.getOrigin(), scale=self.getScale(), z=self.getZValue(), colormap=None, alpha=self.getAlpha())
[docs] def getRgbaImageData(self, copy=True): """Get the displayed RGB(A) image :returns: numpy.ndarray of uint8 of shape (height, width, 4) """ return _convertImageToRgba32(self.getData(copy=False), copy=copy)
def setData(self, data, copy=True): """Set the image data :param data: RGB(A) image data to set :param bool copy: True (Default) to get a copy, False to use internal representation (do not modify!) """ data = numpy.array(data, copy=copy) assert data.ndim == 3 assert data.shape[-1] in (3, 4) self._data = data # TODO hackish data range implementation if self.isVisible(): plot = self.getPlot() if plot is not None: plot._invalidateDataRange() self._updated(ItemChangedType.DATA)
class MaskImageData(ImageData): """Description of an image used as a mask. This class is used to flag mask items. This information is used to improve internal silx widgets. """ pass